

Bayerische Landesanstalt für Landwirtschaft

Abteilung Qualitätssicherung und Untersuchungswesen

Jahresbericht 2010

Impressum

Herausgeber: Bayerische Landesanstalt für Landwirtschaft (LfL)

Vöttinger Straße 38, 85354 Freising-Weihenstephan

Internet: www.LfL.bayern.de

Redaktion: Abteilung Qualitätssicherung und Untersuchungswesen

Lange Point 4, 85354 Freising

E-Mail: AQU@LfL.bayern.de

Telefon: 08161/71-3600

Auflage: Mai 2011

Druck: Abteilung Information und Wissensmanagement

 $\hbox{@ LfL}$

Jahresbericht 2010

Marion Berndt
Richard Ellner
Rudolf Füglein
Günter Henkelmann
Sabine Mikolajewski
Dieter Nast
Johann Rieder
Manfred Schuster

Claudia Petosic (Schriftleitung und Layout)

Inhalt

Vorwoi	rt 7	Seite
1	Organisation	8
1.1	Bayerische Landesanstalt für Landwirtschaft	
1.2	Abteilung Qualitätssicherung und Untersuchungswesen	
1.2.1	Ziele und Aufgaben	
2	Daueraufgaben und Projekte	
2.1	Analysenüberblick	
2.2	Qualitätssicherung in AQU	
2.2.1	Ausweitung der Akkreditierung in AQU und in Laboreinheiten der LfL	
2.2.2	Teilnahme von AQU-Laboren an Ringversuchen zur Qualitätssicherung und Methodenentwicklung	16
2.3	Ergebnisse aus Daueraufgaben und Projekten	19
2.3.1	Notifizierung im Vollzug des Abfallrechts	19
2.3.2	Durchführung von Ringversuchen als Grundlage für die Notifizierung von Laboren im Vollzug des Abfallrechts	22
2.3.3	Fortschreibung der Liste mit zugelassenen "Gülle-Laboren" für das Kulturlandschaftsprogramm (KULAP)	24
2.3.4	Qualitätssicherung zur Absicherung der Beratungsaufgaben des LKP – Grundlagen für die Düngeberatung	24
2.3.5	Analytik von Handelsdüngern für die Düngemittelverkehrskontrolle	27
2.3.6	Kontrolle des Atrazin-Anwendungsverbots 2010	28
2.3.7	Ausbringungsverbot Neonikotinoide	29
2.3.8	Deoxynivalenol-Monitoring (DON-Monitoring) von bayerischem Wintergetreide der Ernte 2010	32
2.3.9	Neuere Fusariummetaboliten: "Fungerin"	35
2.3.10	Versuche zur Analytik von Scopoletin in Kartoffeln und Thaxtomin A in Kulturbrühen phytopatogener Bodenbakterien	36
2.3.11	Bestimmung des Porenvolumens in Backstücken	37
2.3.12	Ringversuche für Labordienstleistungen im Bereich der Biogasproduktion	39
2.3.13	Nahinfrarotspektroskopie, ein Instrument zur quantitativen und qualitativen Bestimmung von Mykotoxinen im Weizen	41
2.3.14	Einführung eines Rohdatenmanagementsystems (RMS)	43
2.3.15	Untersuchungstätigkeit für das Institut für Tierernährung und Futterwirtschaft (ITE)	44

2.3.16	Untersuchungstätigkeit für das Institut für Tierzucht (ITZ)	45
2.3.17	Untersuchungen für das Institut für Fischerei (IFI)	46
2.3.18	Futtermittellabor des Landeskuratoriums der Erzeugerringe für tierische Veredelung Bayern e.V.	47
3	Ausbildung von Chemielaboranten	51
4	Veröffentlichungen und Fachinformationen	52
4.1	Veröffentlichungen	52
4.2	Tagungen, Vorträge, Vorlesungen, Führungen und Ausstellungen	53
4.2.1	Tagungen	53
4.2.2	Vorträge	53
4.2.3	Führungen	55
4.3	Aus- und Fortbildung	56
4.4	Dissertationen und Diplomarbeiten	56
4.5	Mitgliedschaften	57
5	Anhang	59

Vorwort 7

Vorwort

Die Analysen der Abteilung Qualitätssicherung und Untersuchungswesen (AQU) wurden auch im Jahr 2010 von den Instituten der LfL stark nachgefragt. Dies betraf das gesamte Analysenangebot der Abteilung, so dass die Proben- und Analysenzahlen im Vergleich zum Vorjahr wiederum angestiegen sind. Die meisten Proben (92 Prozent) waren LfL-interne Proben aus dem Hoheitsvollzug, den Dauerversuchen der Institute und aus Drittmittelprojekten, an denen AQU beteiligt ist und nur acht Prozent kamen von Auftraggebern außerhalb der LfL. Damit wird die zentrale Bedeutung der Abteilung für die Vollzugs- und Forschungstätigkeit der LfL eindeutig belegt.

Mit den Selbsthilfeeinrichtungen der bayerischen Landwirtschaft - LKP und LKV - hat die Abteilung weiterhin eine intensive Zusammenarbeit. Für das LKP erstellte die Abteilung wie bereits in den Vorjahren eine Liste mit qualitätsgesicherten Bodenuntersuchungslaboren und durch die Fachaufsicht über das LKV-Labor in Grub sichert die Abteilung die Qualität der Futtermittelanalytik ab, die für die Beratung der Landwirte notwendig ist. Für die mikrobiologische Biogasanalytik wurde im Berichtsjahr ein neues Labor eingerichtet, in dem Fragestellungen zur Optimierung des Biogasprozesses bearbeitet werden können und wie bereits im Vorjahr wurde ein weiterer Ringversuche für private Labordienstleister angeboten, um deren Analysenleistung für Biogasanlagen abzusichern.

Intern haben die Labore der Abteilung selbst an verschiedenen Ringversuchen und Vergleichsuntersuchungen teilgenommen, um die Qualität der eigenen Analysenergebnisse abzusichern. Darüber hinaus war ein Arbeitsschwerpunkt der internen Qualitätssicherung die Erweiterung des Qualitätsmanagements, um eine Akkreditierung nach DIN ISO 17025 für die wichtigsten Analysenprozesse von AQU zu erreichen. In diesen Schwerpunkt sind auch einzelne Labore der Institute für Pflanzenschutz und Pflanzenbau eingebunden, die ebenfalls eine Akkreditierung anstreben.

Der vorliegende Jahresbericht soll einen Einblick in die unterschiedlichen Analysenaufgaben von AQU geben.

Mein Dank geht an alle internen wie auch externen Partnern von AQU für die stets vertrauensvolle Zusammenarbeit und natürlich gilt der Dank allen Mitarbeiterinnen und Mitarbeitern der Abteilung, die auch in diesem Berichtsjahr mit hohem Einsatz und großer Sorgfalt die "Laborarbeit" bewältigt haben.

1 Organisation

1.1 Bayerische Landesanstalt für Landwirtschaft

Die Bayerische Landesanstalt für Landwirtschaft (LfL) ist eine dem Staatsministerium für Ernährung, Landwirtschaft und Forsten unmittelbar nachgeordnete Behörde, die im Jahr 2003 aus verschiedenen selbständigen Einrichtungen und Behörden gegründet wurde. Aufgabengebiete der LfL sind anwendungsorientierte Forschung, Hoheits- und Fördervollzug, Ausbildung und Beratung für die bayerische Land- und Ernährungswirtschaft.

Die Aufgabengebiete und die fachliche Ausrichtung – Agrarökologie, Pflanzenbau, Pflanzenschutz, Tierzucht, Tierernährung, Fischerei, Landtechnik, Tierhaltung, Agrarökonomik, Ernährung und Markt – bestimmen die organisatorische Gliederung der Institute.

Die Abteilungen sind Dienstleister, die einerseits die Institute bei ihren Projekten und Aufgaben unterstützen und andererseits mit Aufgaben in eigener Zuständigkeit nach außen wirken.

Die Führungsebene besteht aus dem Präsidenten, dem Präsidium und der Leitungskonferenz, die gemeinsam mit der Stabsstelle als Controlling-Einrichtung und dem Verwaltungsrat mit dem wissenschaftlich-technischen Beirat die Leitlinien der LfL mit verantworten.

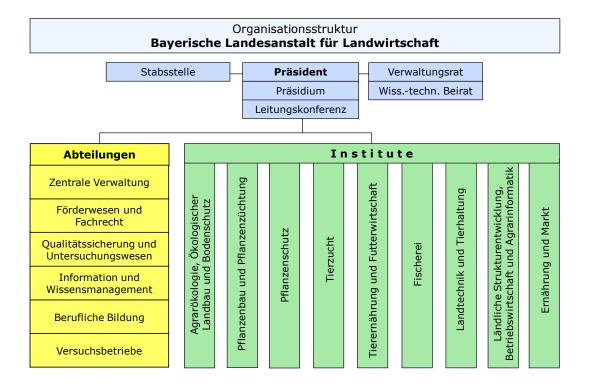


Abb. 1: Organigramm der Bayerischen Landesanstalt für Landwirtschaft (LfL)

1.2 Abteilung Qualitätssicherung und Untersuchungswesen

Die Abteilung Qualitätssicherung und Untersuchungswesen (AQU) ist gegliedert in die Abteilungsleitung und in 4 Sachgebiete. Der Standort der Abteilungsleitung und der Sachgebiete AQU 1, 2 und 4 ist Freising und der von AQU 5 ist Grub/Poing. In Freising befinden sich die Laborkapazitäten für die Pflanzenproduktion i. w. S., also die Matrices: Boden, Dünger, Pflanze und Reststoffe. Im Labor in Grub wird das Probenmaterial aus dem tierischen Bereich bearbeitet und deckt damit den Analysenbedarf für die Futterwirtschaft, Tierernährung, Tierhaltung und Tierzucht ab.

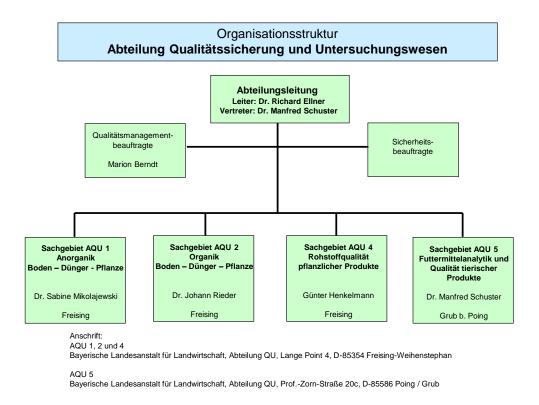


Abb. 2: Organisationsstruktur der Abteilung Qualitätssicherung und Untersuchungswesen

1.2.1 Ziele und Aufgaben

Die Ziele von AQU werden definiert aus der Stellung der Abteilung innerhalb der LfL als Kompetenzzentrum für Analytik.

Die Ziele der Abteilung werden mit der Bearbeitung der folgenden Aufgaben realisiert:

- Analytik von Boden- und Pflanzenproben, Futtermitteln, tierischen Produkten, Düngemitteln und Siedlungsabfällen im Vollzug von Hoheitsaufgaben,
- Qualitätsuntersuchungen und Analysen für die Institute der Landesanstalt, für Selbsthilfeeinrichtungen der bayerischen Landwirtschaft und andere Wirtschaftsbeteiligte,
- Projektforschung in der Analytik in eigener Verantwortung oder in Zusammenarbeit mit internen und externen Partnern.

• Notifizierung von externen Laboren im Vollzug der Klärschlamm-, Bioabfall- und Düngeverordnung,

- Zusammenarbeit mit Fachbehörden, Forschungseinrichtungen und Verbänden in analytisch-methodischen Fragestellungen,
- Ausbildung von Chemielaboranten im eigenen Bereich und in Zusammenarbeit mit den LfL-Instituten.

Das Aufgabenspektrum der Abteilung ergibt sich aus:

- dem Hoheitsvollzug in eigener Zuständigkeit, der insbesondere im Bereich des Abfallrechts (Notifizierungsstelle) wahrgenommen wird.
- der Analytik im Vollzug der Düngeverordnung und des Pflanzenschutzmittelrechts. AQU stellt dazu den zuständigen Instituten der LfL Analysendaten zur Verfügung. Daneben wird Amtshilfe auch für das Bundessortenamt und andere nationale Prüfstellen geleistet.
- dem Analysenbedarf der LfL-Institute, insbesondere der Institute für Agrarökologie, Ökologischer Landbau und Bodenschutz (IAB), für Pflanzenbau und Pflanzenzüchtung (IPZ), für Pflanzenschutz (IPS), für Tierzucht (ITZ), für Tierernährung und Futterwirtschaft (ITE), für Landtechnik und Tierhaltung (ILT) und für Fischerei (IFI).
- der Einbindung von AQU in zahlreiche Forschungsprojekte, Monitoring- und Versuchsprogramme der Institute,
- dem Analysenbedarf der bayerischen Selbsthilfeeinrichtungen der Landwirtschaft (LKP, LKV). AQU erbringt grundlegende Leistungen im Sinne der Qualitätssicherung der landwirtschaftlichen Produktion. Dabei wird die Fachkompetenz privater Labore durch Ringversuche, Probennachkontrollen und Laborüberwachung sicher gestellt bzw. die Fachaufsicht über ein dem Sachgebiet AQU 5 angeschlossenes Futtermittellabor des LKV ausgeübt.

In Abbildung 3 wird die Schnittstelle zu den Instituten der LfL vereinfacht dargestellt. Daraus wird deutlich, dass AQU in vielen Fällen einen Teilprozess innerhalb der Versuchstätigkeit der LfL-Institute bearbeitet.

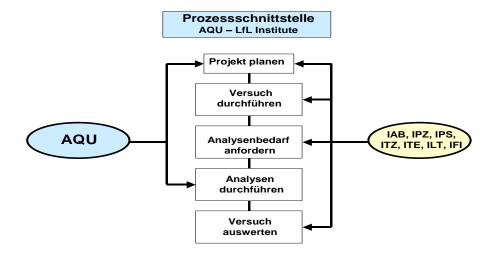


Abb. 3: Prozessschnittstelle: AQU – LfL Institute

Ausdrücklich wird betont, dass AQU nicht auf dem freien Analysenmarkt akquiriert, also keine Untersuchungsaufträge von Landwirten, Verbrauchern oder Firmen ausführt. Ausnahmen werden nur in begründeten Fällen gemacht oder wenn Privatlabore mangels Methodenkompetenz nicht in Anspruch genommen werden können, die Untersuchungen jedoch im allgemeinen Interesse sind. Ein solcher Fall sind z.B. die Brau- und Backqualitätsuntersuchungen für die bayerischen Pflanzenzüchter.

2 Daueraufgaben und Projekte

2.1 Analysenüberblick

Mit insgesamt 69.150 Proben und 299.079 Analysenwerten (Tabellen 1 und 2, Tabelle im Anhang) wurde auch im Jahr 2010 die Analysenleistung von AQU stark nachgefragt. Bei den Probenzahlen bedeutet dies im Vergleich zum Jahr 2009 einen erneuten Zuwachs von 13 Prozent. Im Vergleich zum Jahr 2005 lag die Probenzahl 35 Prozent über dem damaligen Probeneingang. Somit sind die Ressourcen von AQU weiterhin stark ausgelastet.

Tab. 1: Übersicht zu Probenart und -herkunft bearbeitet in AQU, 2010

D. I.	Probenherkunft				
Probenart:	LfL-interne Proben aus			Proben ex-	angamt.
Untersuchungsart Probenmatrix	Hoheits-	Dauerauf-	Drittmittel-	terner Auf-	gesamt
Frobennatrix	vollzug	gaben	projekten	traggeber	
Anorganische Untersuchungen –	535	7 152	2 007	1.823	13.418
Düngemittel, Böden, Getreide	333	7.133	7.153 3.907	1.823	13.418
Organische Untersuchungen –	225	2.000	52	422	2 021
Böden, Heilpflanzen, Getreide	335	3.000	00 53	433	3.821
Untersuchung der Rohstoffquali-		22.596	4.002	2.260	20.729
tät pflanzlicher Erzeugnisse		32.586	4.883	2.269	39.738
Untersuchung der Futtermittel-		2 4 4 0	0.64	644	5.054
qualität		3.448	864	644	5.254
Untersuchung der Qualität tieri-		c 440	104	504	7.017
scher Erzeugnisse		6.449	184	584	7.217
gesamt	870	52.636	9.891	5.753	69.150

Tab. 2: Übersicht zur Zahl der Analysenwerte und der Probenherkunft bearbeitet in AQU, 2010

	Probenherkunft				
Analysenwerte	LfL-inter	LfL-interne Proben aus			~~~~4
aus	Hoheits-	Dauerauf-	Drittmittel-	terner Auf-	gesamt
	vollzug	gaben	projekten	traggeber	
Anorganische Untersuchungen – Düngemittel, Böden, Getreide	3.373	21.504	14.461	3.067	42.405
Organische Untersuchungen – Böden, Heilpflanzen, Getreide	305	3.000		486	3.791
Untersuchung der Rohstoffqualität pflanzlicher Erzeugnisse		175.247	42.023	11.921	229.191
Untersuchung der Futtermittel- qualität		7.573	3.355	850	11.778
Untersuchung der Qualität tierischer Erzeugnisse		9.952	1.210	752	11.914
gesamt	3.678	217.276	61.049	17.076	299.079

Die größten Auftraggeber unter den LfL-Instituten waren IPZ mit 27.699 Proben (2009: 28.034), gefolgt von IAB (17.310 Proben; 2009: 14.091) und ITZ (5.786 Proben, 2009: 2.619 Proben). Gemäß ihren Aufgaben waren die Institute der LfL an unterschiedlichen Analysengruppen, die bei AQU unterschiedlichen Aufwand bedeuten, interessiert. Biogassubstrate und –gärreste waren mit sieben Prozent der Proben beteiligt.

Abbildung 4 zeigt die Zu- und Abnahmen der Probenzahlen im Jahr 2010 im Vergleich zum Vorjahr bei den Auftraggebern von AQU.

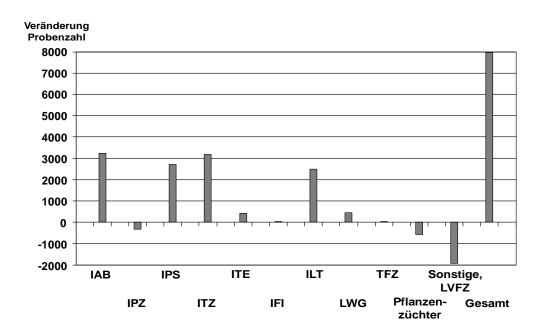


Abb. 4: Zu- und Abnahmen der Probenzahlen im Jahr 2010 im Vergleich zum Vorjahr

Wie aus Abbildung 5 zu erkennen ist, wurden 91,7 Prozent der Proben von den Instituten der LfL bei AQU in Auftrag gegeben, etwa 1,2 Prozent waren Proben aus dem Vollzug der Düngemittelverkehrskontrolle, 76 Prozent kamen aus den Daueraufgaben der Institute, 14,7 Prozent aus Drittmittelprojekten, die federführend bei den Instituten bearbeitet werden. 8,3 Prozent kamen von externen Auftraggebern, für die entsprechende Kosten in Rechnung gestellt wurden.

Im Vergleich zu den Vorjahren ist nur eine geringe Verschiebung der Probenanteile festzustellen. Der Probenanteil der Institute ist im Vergleich zum Vorjahr von 87 % auf 92 % wieder angestiegen.

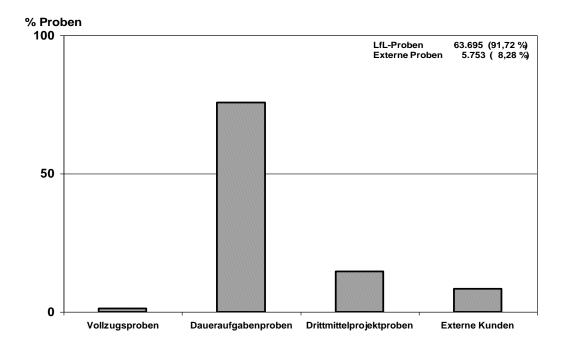


Abb. 5: Anteile an der Probengesamtzahl und Auftraggeber im Jahr 2010

2.2 Qualitätssicherung in AQU

2.2.1 Ausweitung der Akkreditierung in AQU und in Laboreinheiten der LfL

Zielsetzung

Die LfL ist bestrebt, durch die Akkreditierung ihrer Laboreinheiten nach der internationalen Norm DIN EN ISO/IEC 17025 die Qualitätssicherung weiter auszubauen.

Die Akkreditierung ist ein Instrument, um Analysenergebnisse präziser, zuverlässiger und nachvollziehbar zu machen und gleichermaßen die offizielle Bestätigung der Fachkompetenz des Laboratoriums. Darüber hinaus dient die Akkreditierung dazu, auch künftig den Anforderungen des Hoheitsvollzugs entsprechen zu können und die notwendige nationale wie auch internationale Akzeptanz der Untersuchungsergebnisse sicherzustellen. Wichtig ist aber nicht nur die positive Außenwirkung, sondern auch der eigene Nutzen wie z.B. eine optimierte Arbeitsorganisation, die schnellere und bessere Einarbeitung neuer Mitarbeiter oder eine geringere Fehlerquote. Da im Zusammenhang mit der Akkreditierung Ablaufprozesse durchdacht, rationalisiert und umfassend dokumentiert werden, ist zudem gewährleistet, dass Wissen, z.B. bei Personalwechsel, nicht verloren geht.

Neben der bereits seit 2005 bestehenden Akkreditierung des Sachgebiets AQU 1 für die Düngemittelanalytik sollen weitere Bereiche von AQU akkreditiert werden. Es ist geplant, die Mykotoxinanalytik, die Brauwert- und Backqualitätsprüfung und die Futtermittelanalytik ebenfalls akkreditieren zu lassen.

Hinzu kommen einige Verfahren aus den Instituten der LfL: Das Institut für Pflanzenschutz (IPS) beabsichtigt die Akkreditierung der Verfahren zur Untersuchung der bakteriellen Ringfäule und Schleimkrankheit der Kartoffel sowie zur Untersuchung auf Kartoffelkrebs und Kartoffelzystennematoden (IPS 2a, b, c und e) und im Institut für Pflanzenbau und Pflanzenzüchtung (IPZ) wird die Akkreditierung der Virustestung bei Kartoffeln (IPZ 3a) angestrebt.

Methode

Grundlage der Akkreditierung ist der Aufbau eines Qualitätsmanagementsystems (QMS) nach der DIN EN ISO/IEC 17025. Das QMS umfasst alle Mittel und Methoden zur Steuerung der qualitätsbezogenen Prozesse und regelt Abläufe, Verhaltensweisen, Zuständigkeiten und Befugnisse.

Beschrieben wird es vor allem im Qualitätsmanagementhandbuch (QMH), zur QM-Dokumentation gehören aber auch alle anderen Unterlagen, die notwendig sind, um die Normanforderungen zu erfüllen.

Abb. 6: Systematik der Dokumente in einem Qualitätsmanagementsystem

Für den Aufbau, die Einführung und die Pflege des Systems ist die Qualitätsmanagementbeauftragte zuständig, die alle Tätigkeiten im Zusammenhang mit dem QMS koordiniert und Ansprechpartner für alle beteiligten Mitarbeiter ist.

Damit ein Laboratorium das Akkreditierungsverfahren besteht, muss es die Bestimmungen der o.g. Norm erfüllen. Dies sind sowohl allgemeine Anforderungen an das Qualitätsmanagement als auch technische Anforderungen an Prüf- und Kalibrierlaboratorien. Hierbei handelt es sich um die Aufbau- und Ablauforganisation des Laboratoriums, den Umgang mit Dokumenten, die Beschaffung von Ausrüstungen oder um Korrektur- und Vorbeugemaßnahmen genauso wie um die Arbeitsweisen zur Durchführung technischer Prüfungen, von der Kalibrierung der Messgeräte, der Einschätzung von Messfehlern und der Sicherung der Qualität der Analysenergebnisse bis hin zur Erstellung aussagekräftiger Prüfberichte.

Die regelmäßige Überprüfung durch die Deutsche Akkreditierungsstelle (DAkkS) und die kontinuierliche Eigenkontrolle, u.a. durch Qualitätssicherungsmaßnahmen, sogenannte in-

terne Audits und Management-Bewertungen, gewährleisten die Wirksamkeit und stetige Verbesserung des QMS.

Ergebnisse

Das QMS wurde im Wesentlichen eingerichtet, insbesondere wurden Regelungen zu den qualitätsrelevanten Abläufen getroffen, Verantwortlichkeiten bestimmt und die Dokumentationsstruktur festgelegt. Darüber hinaus wurde unter Berücksichtigung der Organisation und der Normanforderungen die Dokumentationssoftware roXtra auf die LfL-spezifischen Bedürfnisse angepasst und in Betrieb genommen. Außerdem wurde bereits das QMH erstellt - wegen der bestehenden Akkreditierung zunächst nur für AQU 1, mit dem Ziel, die übrigen Bereiche später einzubinden - und eine Vielzahl von Verfahrens- und Arbeitsanweisungen sowie Formblättern erarbeitet.

Projektleitung: Dr. R. Ellner, Dr. L. Seigner (IPS)

Projektbearbeitung: Marion Berndt

Kooperation: Abt./AG AQU, IPS 2a, b c, e, IPZ 3a

Projektdauer: 10 / 2009 bis 09 / 2012

2.2.2 Teilnahme von AQU-Laboren an Ringversuchen zur Qualitätssicherung und Methodenentwicklung

Zur Stabilisierung und Evaluierung der Analysenleistungen in AQU ist die regelmäßige Teilnahme an Ringversuchen mit unterschiedlichen Zielsetzungen notwendig. Nachdem in AQU sowohl Methoden entwickelt werden als auch Analytik zur Qualitätssicherung bearbeitet wird, ist es erforderlich an Ringversuchen teilzunehmen, die entsprechend ausgerichtet sind.

In Tabelle 3 sind die Ringversuchsteilnahmen der AQU-Labore zusammengefasst.

Tab.3: Übersicht zur Teilnahme von AQU-Labore an Ringversuchen im Jahr 2010

Teilnehmer	Thema des Ringversuchs	Veranstalter	Datum
AQU 1	DSN 1: Bestimmung von N _{min} in Bodenproben	LfL-AQU 1	1/2010
AQU 1	DSN 2: Bestimmung von N _{min} in Bodenproben	LfL-AQU 1	3/2010
AQU 1	VDLUFA International Fertiliser Ring Test EU Q2/2010	VDLUFA, Fachgruppe III	4/2010
AQU 1	Fünf-Länder-Ringversuch Fachmodul Abfall (FMA): Klärschlamm, Boden, Bio- abfall	LTZ-Augustenberg, Hess. Landeslabor Kassel, LfL-AQU, LUFA Speyer, Landesamt f. Umwelt- u. Arbeitsschutz Saarbrücken	4/2010

Teilnehmer	Thema des Ringversuchs	Veranstalter	Datum
AQU 1	Pilot-Fünf-Länder- Ringversuch Klärschlamm feucht	LfL-AQU 1	7/2010
AQU 1	Ringversuch 137-08-M: Bestimmung von Schwer- metallen in Böden mittels ICP-OES	VDLUFA, Fachgruppe VIII	8/2010
AQU 1	Calciumcarbonat in Düngemitteln	VDLUFA, Fachgruppe III	12/2010
		T	
AQU 2	Deoxynivalenol (DON) in Mais	The Food and Environment Research Agency, UK (FAPAS)	3/2010
AQU 2	Zearalenon (ZON) in Babynahrung	FAPAS	3/2010
AQU 2	DON in Getreide	DLA, Ahrensburg	3/2010
AQU 2	DON in Maismehl	FAPAS	6/2010
AQU 2	ZON in Frühstückszereali- en	FAPAS	8/2010
AQU 2	DON in Tierfutter	FAPAS	9/2010
AQU 2	DON in Frühstückszerea- lien	FAPAS	9/2010
		, ,	
AQU 4	Ringversuche zu Getreide- inhaltsstoffen mittels NIRS / NIT	Detmolder Institut für Getreide- und Fettanalytik GmbH (DIGEFa)	1/2010
AQU 4	Untersuchungen von Getreideinhaltsstoffen mittels	AGF	1/2010
AQU 4	Analytik zur Bestimmung der Malzqualität	TU-München	1/2010
AQU 4	Getreidestandardisierung	DOEMENS	2/2010
AQU 4	Ringversuche zu Getreide- inhaltsstoffen mittels NIRS / NIT	Detmolder Institut für Getreide- und Fettanalytik GmbH	3/2010
AQU 4	Untersuchungen von Getreideinhaltsstoffen mittels	AGF	3/2010
AQU 4	Analytik zur Bestimmung der Malzqualität	TU-München	3/2010
AQU 4	Ringversuche zu Getreide- inhaltsstoffen mittels NIRS / NIT	Detmolder Institut für Getreide- und Fettanalytik GmbH	5/2010

Teilnehmer	Thema des Ringversuchs	Veranstalter	Datum
AQU 4	Untersuchungen von Getreideinhaltsstoffen mittels	AGF	5/2010
AQU 4	Analytik zur Bestimmung der Malzqualität	TU-München	5/2010
AQU 4	Feuchtebestimmung Abgleich	Pfeuffer 4	6/2010
AQU 4	Ringversuche zu Getreide- inhaltsstoffen mittels NIRS / NIT	Detmolder Institut für Getreide- und Fettanalytik GmbH	7/2010
AQU 4	Untersuchungen von Getreideinhaltsstoffen mittels	AGF	7/2010
AQU 4	Ringversuche Referenzmethoden Raps	VDLUFA	7/2010
AQU 4	Ringversuche zu Getreide- inhaltsstoffen mittels NIRS / NIT	Detmolder Institut für Getreide- und Fettanalytik GmbH	9/2010
AQU 4	Untersuchungen von Getreideinhaltsstoffen mittels	AGF	9/2010
AQU 4	Analytik zur Bestimmung der Malzqualität	TU-München	9/2010
AQU 4	Biogasringversuche	LfL / AQU 4	9/2010
AQU 4	Ringversuche Referenzmethoden Silomais	VDLUFA	10/2010
AQU 4	Messwertabgleich im NIRS Verbund	NIRS GmbH Kassel	10/2010
AQU 4	Ringversuche zu Getreide- inhaltsstoffen mittels NIRS / NIT	Detmolder Institut für Getreide- und Fettanalytik GmbH	11/2010
AQU 4	Untersuchungen von Getreideinhaltsstoffen mittels	AGF	11/2010
AQU 4	Analytik zur Bestimmung der Malzqualität	TU-München	11/2010
AQU 4	Analytik zur Bestimmung der Malzqualität	TU-München	12/2010
AQU 5	IAG Ringtest 2010 for Feedingstuffs Alfameal Pellets Piglets Complementary Feed	Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH	6/7/2010

Teilnehmer	Thema des Ringversuchs	Veranstalter	Datum
AQU 5	Maissilage Ringuntersuchung 2010 Untersuchungsmethodik Frischproben Nasschemie/NIRS Trockenmassekorrektur Energiebewertung	LfL/ITE AQU 5	8/2010
AQU 5	Futtermittelringanalyse des Landesarbeitskreises "Futter und Fütterung im Freistaat Sachsen"	Staatliche Betriebsge- sellschaft für Umwelt und Landwirtschaft, Sachsen	9-11/2010
AQU 5	Bonner Enquete Untersuchung von Einzel und Mischfuttermitteln	VDLUFA, Fachgruppe VI	12/2010

Projektleitung: Sachgebietsleiter in AQU

Projektbearbeitung: Mitarbeiter in den Laboren von AQU

Projektdauer: Daueraufgabe

2.3 Ergebnisse aus Daueraufgaben und Projekten

2.3.1 Notifizierung im Vollzug des Abfallrechts

Zielsetzung

Nach Klärschlamm- und Bioabfallverordnung und dem daraus definierten Fachmodul Abfall (FMA) ist AQU für die Notifizierung von Privatlaboren zuständig, die damit berechtigt sind Untersuchungsaufträge der Kläranlagenbetreiber, -ausbringer und -abnehmer anzunehmen. Von den Kreisverwaltungsbehörden (Landratsämter) werden Analysenergebnisse im Zusammenhang mit der Klärschlammausbringung nur dann anerkannt, wenn diese von notifizierten Laboren bearbeitet worden sind.

Nach Umsetzung der EU-Dienstleistungsrichtlinie, die seit November 2010 im Vollzug zu berücksichtigen ist, ist die Notifizierung eines Labors durch die Notifizierungsstelle eines Bundeslandes bundesweit gültig, so dass Gegennotifizierungen in Zukunft nicht mehr erforderlich sind.

Methode

In Abbildung 7 werden die wichtigsten Prozessschritte für die Notifizierung durch AQU dargestellt.

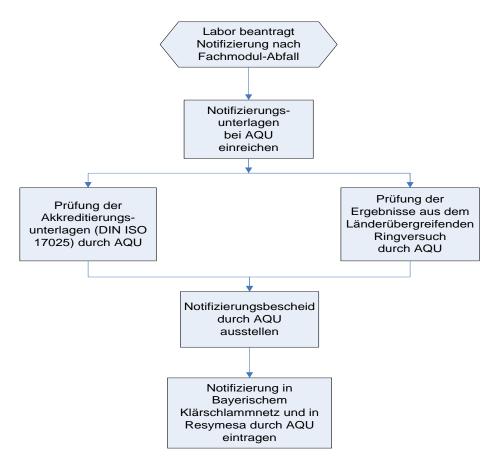


Abb. 7: Wesentliche Schritte bei der Notifizierung von Laboren nach Fachmodul Abfall

Die wesentlichen Aufgaben bei der Notifizierung durch AQU nach Fachmodul Abfall sind:

- Prüfung der Akkreditierungsunterlagen
- Prüfung der Ringversuchsergebnisse
- Ausfertigung der Notifizierungsbescheide für Labore und Bodenprobenehmer
- Eintragung der Notifizierung in das Bayerische Klärschlammnetz und in das Recherchesystem (Resymesa)

Prüfung der Akkreditierungsunterlagen

Die Labore legen bei AQU die Akkreditierungsunterlagen vor, die den Vorgaben der DIN ISO 17025 entsprechen müssen. Dazu lassen sich die Labore von der Deutschen Akkreditierungsstelle (DAKKs) unter Berücksichtigung des Fachmoduls Abfall auditieren. AQU bearbeitet die Antragsunterlagen der Labore im Einvernehmen mit der AQS-Stelle Umwelt des Bayerischen Landesamtes für Umwelt (LfU).

Im Jahr 2010 hat die Notifizierungsstelle bei AQU 13 Akkreditierungsunterlagen überprüft. 5 Laborunternehmen wurden darauf hingewiesen, eine Akkreditierung bei der DAKKs anzustreben.

Prüfung der Ringversuchsergebnisse

Zur Aufrechterhaltung der Notifizierung müssen die Labore an Ringversuchen teilnehmen, die in Zusammenarbeit mit den Vollzugsbehörden der Bundesländer Baden-

Württemberg, Bayern, Hessen, Rheinland-Pfalz und Saarland (="5-Länder-Ringversuch") jährlich durchgeführt werden. Die Ergebnisse der Ringversuche werden den Notifizierungsstellen in den Bundesländern von den Ringversuchsveranstaltern zur Verfügung gestellt. Die Notifizierung bleibt nur dann gültig, wenn die Labore in zwei von drei Jahren erfolgreich an den Ringversuchen teilgenommen haben.

In 2010 gab es bei den Ringversuchsergebnissen der bayerischen Labore keine nennenswerten Auffälligkeiten, so dass die Notifizierungen aufrecht erhalten werden konnten.

Ergebnisse

Ausfertigung der Notifizierungsbescheide für Labore

Die Zahl der notifizierten Labore für die verschiedenen Untersuchungsbereiche geht aus Tabelle 4 hervor.

Tab. 4: Von AQU notifizierte Labore in Bayern und in anderen Bundesländern (Stand 31.12.2010)

Notificianungshaveich nach Fachmadul Abfall (FMA)	Anzahl	Labore
Notifizierungsbereich nach Fachmodul Abfall (FMA)	Sitz Bayern	Sitz sonstig
1.1 Probenahme Klärschlamm	18	15
1.2 Schwermetalle im Klärschlamm	20	16
1.3 Adsorbierte organisch gebundene Halogene (AOX) im KS	20	17
1.4 Nährstoffe im Klärschlamm	19	17
1.5 PCP im Klärschlamm	6	10
1.6 Dioxine/Furane im Klärschlamm	5	6
2.1 Probenahme Boden	18	15
2.2 Schwermetalle im Boden	18	17
2.3 Nährstoffe im Boden	19	14
3.1 Probenahme Bioabfall	15	9
3.2 Schwermetalle im Bioabfall	15	10
3.3 Fremdstoffe, Steine, Salzgehalt im Bioabfall	14	8
3.4 Seuchenhygiene (Salmonellen) im Bioabfall	7	6
3.5 Phytohygiene im Bioabfall	8	6

Insgesamt waren zum 31.12.2010 von der AQU-Notifizierungsstelle 50 Labore notifiziert, davon 30 mit Sitz in Bayern und 20 außerhalb Bayerns.

Ausfertigung der Notifizierungsbescheide für Bodenprobenehmer

Seit 01.01.2009 dürfen Bodenproben von Flächen, die mit Klärschlamm beschlämmt werden sollen, nur noch von notifizierten Laboren oder notifizierten Bodenprobenehmern genommen werden. Der Personenkreis, der eine Notifizierung beantragen kann, darf keine

wirtschaftlichen Interessen zur Klärschlammausbringung haben. Die Antragsteller müssen eine Schulung zur Bodenprobenahme absolvieren und eine Verpflichtungserklärung bei der Notifizierungsstelle in AQU vorlegen. Die Notifizierungsbescheide haben eine Gültigkeit von 5 Jahren.

In 2010 hat AQU 62 Personen die Notifizierung als Bodenprobenehmer erteilt. Insgesamt sind in Bayern 556 Personen als Bodenprobenehmer notifiziert.

Projektleitung: Dr. R. Ellner

Projektbearbeitung: C. Petosic, J. Lempart

Projektdauer: Daueraufgabe

2.3.2 Durchführung von Ringversuchen als Grundlage für die Notifizierung von Laboren im Vollzug des Abfallrechts

Zielsetzung

Im Rahmen der "5-Länder-Ringversuche", die im Vollzug der Abfallklärschlamm-Verordnung und der Bioabfall-Verordnung durchgeführt werden, ist AQU 1 für die Parameter 1.2, 1.3 und 1.4 nach Fachmodul Abfall (FMA) zuständig. Die Ringversuche werden jährlich durchgeführt.

Die Ergebnisse der Ringversuche, an denen sich die notifizierten Labore beteiligen müssen, werden den Notifizierungsstellen in den Bundesländern zur Verfügung gestellt.

In der Tabelle 5 sind die Zuständigkeiten für den 5-Länder-Ringversuch aufgelistet.

Tab. 5: Zuständigkeit der Bundesländer für Ringversuchsparameter im 5-Länder-Ringversuch

Bundesland	Parameterbezeichnung nach Fachmodul Abfall (FMA)	Beschreibung des Parameters
Bayern	FMA 1.2	Schwermetalle im Klärschlamm
	FMA 1.3	AOX im Klärschlamm
	FMA 1.4	Nährstoffe, physikalische Parameter im Klärschlamm
Rheinland-Pfalz/	FMA 1.5	PCB im Klärschlamm
Saarland	FMA 1.6	PCDD/F im Klärschlamm
Baden-Württemberg	FMA 2.2	Schwermetalle, pH-Wert, Bodenart des Bodens
	FMA 2.3	Pflanzenverfügbare Nährstoffe des Bodens
Hessen	FMA 3.2	Schwermetalle in Bioabfall
	FMA 3.3	Fremdstoffe, physikalische Parameter im Bioabfall

Bundesland	Parameterbezeichnung nach Fachmodul Abfall (FMA)	Beschreibung des Parameters
Hessen	FMA 3.4	Seuchenhygienische Untersuchung am Bioabfall
	FMA 3.5	Phytohygienische Untersuchung am Bioabfall

Methode

"AQU 1 Anorganische Analytik" stellt für den Ringversuch das Probenmaterial her. Insgesamt wurden 300 Ringproben bereitgestellt: Klärschlammproben, getrocknet und gemahlen und Klärschlammproben, flüssig. Zur Absicherung des Probenmaterials waren 1110 Analysen notwendig.

An diesem Ringversuchsteil haben 86 Labore aus den Bundesländern Bayern, Baden-Württemberg, Rheinland-Pfalz, Hessen und Saarland teilgenommen.

Die gesamte Datenerfassung erfolgte mit dem Programm ProLab Plus 2009, Version 2.11 der Fa. Quo data. Das Auswertungsmodul basiert auf DIN 38402 A 45. Für die Laborbewertung wird das Modul "Zu-Score-Berechnung" eingesetzt.

Ergebnisse

Der Ringversuch 2010 im Vollzug der Klärschlammverordnung und des Fachmoduls Abfall konnte ohne besondere Vorkommnisse von AQU 1 veranstaltet werden. Die Ergebnisse sind in Abbildung 8 im Vergleich zu den Jahren 2008 und 2009 dargestellt.

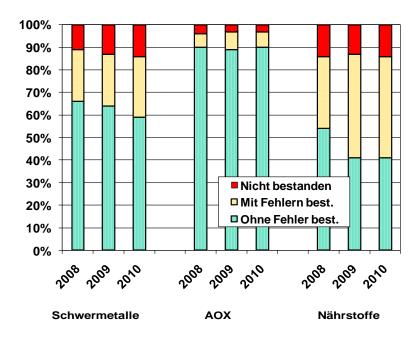


Abb. 8: Ergebnisse des Fünf-Länder-Ringversuchs 2008 – 2010 zu Schwermetallen, AOX, Nährstoffe im Klärschlamm

Im Vergleich zum Jahr 2009 war der Anteil der Teilnehmer, die den Ringversuch nicht bestanden haben, im Parameterbereich AOX (FMA 1.3) gleich hoch, bei den Schwermetallen (FMA 1.2) und den Nährstoffen (FMA 1.4) war im Vergleich zum Vorjahr ein Anstieg von jeweils einem Prozent zu beobachten. Im Durchschnitt haben 90 Prozent der Teilnehmer bestanden.

Projektleitung: Dr. R. Ellner, Dr. S. Mikolajewski

Projektbearbeitung: C. Petosic, W. Sitte, M. Wärmann, S. Kneipp

Projektdauer: Daueraufgabe

2.3.3 Fortschreibung der Liste mit zugelassenen "Gülle-Laboren" für das Kulturlandschaftsprogramm (KULAP)

Zielsetzung

Seit 2003 fördert das Bayerische Staatsministerium für Ernährung, Landwirtschaft und Forsten im Rahmen des Kulturlandschaftsprogramms (KULAP) die umweltschonende Flüssigmistausbringung. Für die Landwirte besteht die Auflage, mindestens einmal im Jahr die Gülle in einem von der LfL anerkannten Labor untersuchen zu lassen.

Methode

Zu untersuchende Pflichtparameter sind der Gesamt-N-Gehalt und der Ammonium-N-Gehalt. Außerdem müssen sich die Labore verpflichten, einige Betriebsdaten des Gülleeinsenders zu erfassen und diese zusammen mit den Analysenergebnissen an die LfL (Institut für Agrarökologie, IAB) weiterleiten.

Da Gesamt-N und NH₄-N auch Pflichtparameter beim Klärschlamm sind, sind alle für den Untersuchungsbereich "Nährstoffe im Klärschlamm (FMA 1.4)" notifizierten Labore für die Gülleuntersuchungen zugelassen, vorausgesetzt sie erklären sich zur Datenerhebung und –weiterleitung an die LfL bereit.

Ergebnisse

Von den in 2010 notifizierten 30 Laboren mit Sitz in Bayern befanden sich bis zum 31.12.2010 nur noch 14 Labore auf der "Gülle-Liste".

Projektleitung: Dr. R. Ellner Projektbearbeitung: C. Petosic Projektdauer: Daueraufgabe

2.3.4 Qualitätssicherung zur Absicherung der Beratungsaufgaben des LKP – Grundlagen für die Düngeberatung

Auswahl der LKP - Auftragnehmer-Labore

Zielsetzung

Die Untersuchung von Agrarböden zur Erlangung genauer Kenntnisse über den Gehalt an Nährstoffen, Spurenelementen sowie anorganischen Schadstoffen (z.B. Schwermetallen) ist essentielle Basis für die Gestaltung einer qualitätsbewussten und umweltschonenden Landbewirtschaftung. Nicht zuletzt ist sie für den Landwirt notwendig, um neben den

ökologischen Gesichtspunkten den Einsatz von Düngemitteln, auch vor dem Hintergrund steigender Preise für Produktionsmittel, effizient vornehmen zu können.

In Bayern werden Bodenuntersuchungen vom Landeskuratorium für pflanzliche Erzeugung (LKP) über die angeschlossenen Erzeugerringe organisiert und bei Privatlaboren in Auftrag gegeben. Die Analysendaten gehen an das Institut für Agrarökologie (IAB) zurück, das daraus eine Düngeempfehlung für die Landwirte erstellt.

Methode

AQU ist selbst kein LKP-Auftragnehmer-Labor, sondern benennt dem LKP die dafür geeigneten Labore, die sich im Rahmen von Qualitätssicherungsmaßnahmen, die von AQU vorgegeben werden, qualifizieren müssen. In der Abbildung 9 werden die Schritte, die zur Auswahl der Labore notwendig sind, dargestellt.

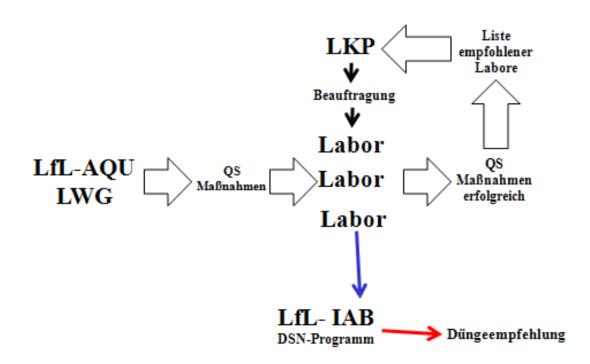


Abb. 9: AQU/LWG-QS-Maßnahmen und Auswahl der LKP-Auftragslabore

Die Qualitätssicherungsmaßnahmen setzen sich aus Ringversuchen und Probennachkontrollen zusammen.

Die Ringversuche werden zu folgenden Parametern von AQU 1 veranstaltet:

- Grundnährstoffe (einschließlich Mg, Humus, freier Kalk und Bodenartbestimmung)
- Spurenelemente und zu
- N_{min} (mineralischer Stickstoff)

In die Durchführung der Ringversuche ist das Bodenlabor der Bayerischen Landesanstalt für Weinbau und Gartenbau (LWG) in Veitshöchheim eingebunden, da nur dort für beide

Landesanstalten ein Bodenlabor für die Untersuchung auf Hauptnährstoffe und Spurenelemente vorgehalten wird.

Im Jahr 2010 haben 17 Laborunternehmen an den Ringversuchen teilgenommen, um damit auf die "Liste der empfohlenen Labore" zu gelangen.

Ergebnisse

Wie der Abbildung 10 zu entnehmen ist, scheiterten auch in 2010 ein bis zwei Labore bei den verschiedenen Ringversuchsteilen.

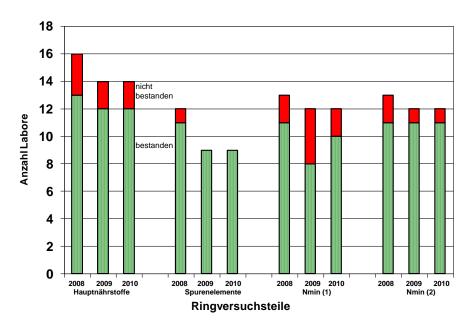


Abb. 10: Vergleich der Ergebnisse der Ringversuche 2008 bis 2010 bei Labore im Bewerbungsverfahren als LKP-Auftragslabor

Für die Untersuchungssaison 2010/2011 konnte dem LKP die in Tabelle 6 genannte Zahl von Untersuchungsstellen gemeldet werden. Unter den 14 Laboren mit Kompetenz für Hauptnährstoffe befinden sich 6 mit Sitz außerhalb Bayerns, während es bei den 9 Spurenelement- und 8 N_{min} -Laboren jeweils 3 sind.

Tab. 6: Anzahl der für das LKP als geeignet erklärten Labore für die Bodenuntersuchung 2010/2011 und Zahl der beauftragten Labore

Parameterbereich	geeignete Labore	beauftragte Labore				
Hauptnährstoffe	14	4				
Spurenelemente*)	9	4				
N _{min} -Untersuchungen (DSN)	8	6				
*) Labor muss auch Kompetenz für Hauptnährstoffe haben						

Zusätzlich zu den Ringversuchen findet in der Regel einmal im Jahr bei allen LKP-Auftragnehmern eine Überprüfung der Analytik an Rückstellproben mit den Parameterbereichen "Hauptnährstoffe" und "Spurenelemente" statt. Die Auswahl dieser Proben erfolg-

te durch AQU, die Untersuchung führte die LWG durch. In 2010 wurden fünf Labore mit 319 Proben nachkontrolliert.

Die Erfahrungen einer Untersuchungssaison sind Gegenstand einer Besprechung mit allen aktuellen und potenziellen LKP-Auftragnehmer-Laboren. Diese Besprechung fand im Dezember 2010 statt.

Projektleitung: Dr. S. Mikolajewski, Dr. M. Klemisch (LWG) Projektbearbeitung: C. Petosic, M. Wärmann, S. Kneipp, S. Drotleff

Projektdauer: Daueraufgabe

2.3.5 Analytik von Handelsdüngern für die Düngemittelverkehrskontrolle

Zielsetzung

Eine der zentralen Daueraufgaben des Sachgebiets AQU 1 Anorganik Boden-Dünger-Pflanze ist chemischdie analytische Untersuchung der im Auftrag der amtlichen Düngemittelverkehrskontrolle (DVK) landesweit gezogenen Proben von Handelsdüngern (Abb. 11) zur Überprüfung der düngemittelrechtlichen Vorschriften. Geprüft wird hierbei, ob die vorgeschriebenen Toleranzen bei der Deklaration der Nährstoffangaben bzw. der mit Grenzwerten belegten Schadstoffe eingehalten werden. Die Analysenergebnisse werden nachfolgend der am Institut für Pflanzenbau und Pflanzenzüchtung ansässigen Arbeitsgruppe Verkehrsund Betriebskontrollen (IPZ 6b) zur weiteren Verbescheidung im Vollzug der Düngemittelverordnung zur Verfügung gestellt.

Abb. 11: Düngemittelproben

Methode

Gemäß der von IPZ 6b erteilten Untersuchungsaufträge werden die Düngemittelproben entsprechend der deklarierten Gehalte an den Hauptnährstoffen Stickstoff, Phosphor und Kalium, den Sekundärnährstoffen Calcium, Schwefel und Magnesium sowie deren Löslichkeiten überprüft. Für Spurennährstoffdünger werden zudem je nach Deklaration die Gehalte der Elemente Bor, Eisen, Kupfer, Mangan, Molybdän Selen und/oder Zink ermittelt. Kalkdünger erfordern neben der Bestimmung der CaCO₃- bzw. CaO-Gehalte die Ermittlung basisch wirksamer Bestandteile, die Reaktivität und die Analyse von Siebdurchgängen. Entsprechend den in der Düngemittelverordnung festgelegten Kriterien wird die Bestimmung von Schwermetallen und anderen relevanten Schadstoffen durchgeführt.

Je nach Düngemitteltyp sind Methoden nach deutschem oder EU-Recht anzuwenden. Die Analysenmethoden sind vom Gesetzgeber vorgeschrieben und in normkonformen Arbeitsvorschriften festgelegt. Entsprechend der gesetzlichen Vorschriften ist das Sachgebiet AQU 1 für die Düngemittelanalytik nach DIN EN ISO 17025:2005 akkreditiert.

Zuzüglich zum weiten Spektrum nasschemischer Verfahren (Maßanalyse, Gravimetrie) kommt auf dem Gebiet der instrumentellen Analytik die Atomabsorptionsspektrometrie (AAS), die Elementaranalyse, die optische ICP-Emissionsspektrometrie (ICP-OES, Abb. 12) sowie die Hydrid- und die Kaltdampftechnik zum Einsatz.

Abb. 12: Akkreditierungsurkunde AQU1

Ergebnisse

Jährlich werden im Sachgebiet etwa 500 amtliche Düngemittelproben untersucht. Im Jahr 2010 belief sich die Anzahl der zur Analytik überstellten Proben auf 536. Die zugehörigen Untersuchungsaufträge der DVK-Stelle wurden dem Labor im Zeitraum vom 01.02.2010 bis 18.01.2011 übermittelt. Zur Untersuchung der je nach Deklaration geforderten Parameter (insgesamt sind 123 verschiedene möglich) waren insgesamt 3.733 Einzelanalysen notwendig. Bei 127 Proben wurden Gehaltsabweichungen festgestellt. Im Vergleich zum Vorjahr (534 Proben, 116 Gehaltsabweichungen) ist damit leider ein Anstieg der zu beanstandenden Proben von 21,7 % auf 23,7 % zu verzeichnen.

Die Analysenergebnisse wurden der Arbeitsgruppe Verkehrs- und Betriebskontrollen (IPZ 6b) zur weiteren Verbescheidung im Vollzug der Düngemittelverkehrskontrolle zur Verfügung gestellt.

Projektleitung: Dr. S. Mikolajewski

Projektbearbeitung: K. Baier, R. Graßl, H. Schuhmann, W. Sitte, M. Wärmann,

G. Zellner

Kooperation: IPZ 6b, AQU 4 Projektdauer: Daueraufgabe

2.3.6 Kontrolle des Atrazin-Anwendungsverbots 2010

Zielsetzung

Die Kontrolle des Atrazin-Anwendungsverbots im Vollzug der Pflanzenschutzmittel-Anwendungsverordnung erfolgte wie in den vergangenen Jahren im Auftrag von IPS.

Methode

Es wurden 92 Maisanbaubetriebe beprobt, davon stammten 12 aus der Zufallsauswahl und 78 aus 6 verschiedenen Verdichtungsprogrammen. Weiterhin wurden 10 Betriebe mit

Christbaumkulturen überprüft, sowie eine Verdachtsprobe gezogen. Die Proben wurden wie bisher in Zusammenarbeit mit dem Lehrstuhl für Bioanalytik der TU München mittels eines atrazinspezifischen ELISA untersucht. Die Verdachtsprobe wurde in AQU 2 mit Hochdruckflüssigchromatographie untersucht.

Ergebnisse

Keine der Untersuchungsproben zeigte einen Atrazinwert über dem juristischen Grenzwert von 100 µg Atrazin pro Kilo lufttrockenem Boden. Die Verdachtsprobe lag ebenfalls unterhalb der Nachweisgrenze. Die Beanstandungsquote lag damit wie im Vorjahr bei Null.

Projektleitung: Dr. J. Rieder Projektbearbeitung: I. Schanze Projektdauer: Daueraufgabe

2.3.7 Ausbringungsverbot Neonikotinoide

Zielsetzung

Das Bienensterben in Baden-Württemberg im Frühjahr 2008 wurde auf gebeiztes Saatgut zurückgeführt, welches Wirkstoffe aus der Gruppe der Neonikotinoide enthielt. Daraufhin erfolgte eine Aussetzung der Zulassung von Saatgutbeizen, die die Substanzen Clothianidin, Imidacloprid und Thiamethoxam enthalten. In Zusammenarbeit mit IPS erfolgte eine Überwachung des Ausbringungsverbotes von gebeiztem Saatgut, das mit diesen Substanzen behandelt wurde.

Methode

168 Maisproben wurden mit einem organischen Lösungsmittel extrahiert und mit Dünnschichtehromatographie auf Vorkommen der Wirkstoffe Clothianidin, Imidacloprid und Thiamethoxam hin untersucht. Als Referenz diente ein Mischstandard der drei Substanzen, mit Konzentrationen von 1000 mg/l. Zur Identifizierung der erlaubten Wirkstoffe Methiocarb und Thiram wurden im Vorfeld die Retentionsfaktoren beider Verbindungen ermittelt. Die Detektion erfolgte mittels UV-Licht (254 nm) und Fluoreszenzlöschung.

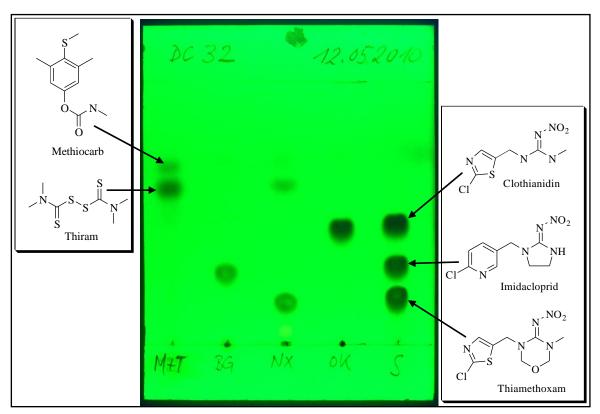


Abb. 13: Dünnschichtchromatographische Trennung von Beizmitteln.

Auftragung je 10 μl. Konzentrationen: Standards: 1000 mg/l, Proben: 10 g/50 ml,

Bahn 1: Standard Methiocarb und Thiram,

Bahn 2: Extrakt von Imidacloprid gebeiztem Mais,

Bahn 3: Extrakt von Thiram und Thiamethoxam gebeiztem Mais,

Bahn 4: Extrakt von Clothianidin gebeiztem Mais, Bahn 5: Gemisch Standard Neonikotinoide, Platte unter UV-Licht bei 25 nm

Positive Proben wurden mittels Hochleistungsflüssigkeitschromatographie (HPLC) und UV-Detektion (Diodenarraydetektor) gegen externe Eichkurven quantifiziert. Zur Abschätzung der Aufwandmenge der Neonikotinoide auf gebeizten Maiskörnern wurde von alten Proben, die jeweils mit einem der drei Neonikotinoide behandelt wurden, Extrakte angefertigt.

Ergebnisse

Die Dünnschichtchromatographie ist eine schnelle Methode um eine große Probenzahl in relativ kurzer Zeit zu überprüfen. Es wurden fünf positive Proben identifiziert, die daraufhin mit HPLC genauer untersucht wurden.

Die HPLC-Messung von drei alten Maisproben ergab Aufwandmengen von ca. 2 g Thiamethoxam/kg Mais, ca. 1,5 g Imidacloprid/kg Mais und ca. 5 g Clothianidin/kg Mais. Setzt man 1% dieser Aufwandmenge als untere Grenze, um eine Abgrenzung gegenüber Abrieb, Fremdeintrag, Verschleppung etc. zu ziehen, sind Wirkstoffkonzentrationen von > 20 mg/kg Thiamethoxam, > 15 mg/kg Imidacloprid und > 50 mg/kg Clothianidin als positiv zu betrachten.

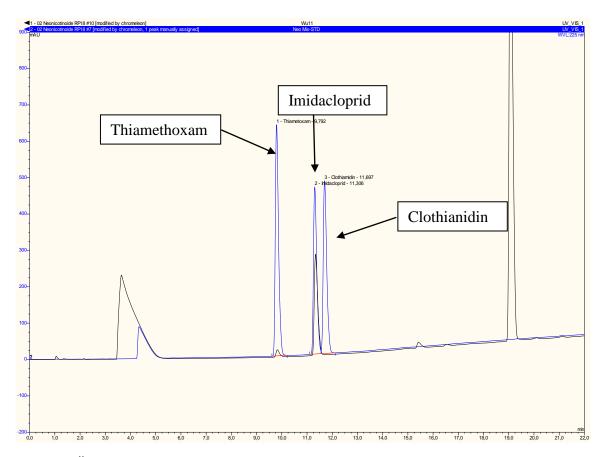


Abb. 14: Überlagerte HPLC-Chromatogramme der drei Standardsubstanzen (blau) und einer positiven Probe (schwarz) mit Imidacloprid und Thiamethoxam

Eine Probe wies einen Gehalt von 572 mg/kg Thiamethoxam (ca. 27 % Wirkstoffgehalt des Erwartungswertes) auf. Eine weitere enthielt sogar zwei Wirkstoffe (s. o. Abb. 14): Imidacloprid mit 963 mg/kg (ca. 66 % des Erwartungswertes) und Thiamethoxam mit 48,7 mg/kg (ca. 2 % des Erwartungswertes). Bei beiden Proben ist von einer Beizung mit den verbotenen Substanzen auszugehen.

Eine Probe wies 0,05 mg/kg Imidacloprid (ca. 0,003 % des Erwartungswertes) und 15,9 mg/kg Clothianidin (ca. 0,3 % des Erwartungswertes) auf. Auf Grund der geringen Mengen an Wirkstoffen dürfte es sich aber bei dieser Probe um Verunreinigung oder Verschleppung handeln. Eine weitere Kornprobe wies 5,4 mg/kg Thiamethoxam (ca. 0,2 % des Erwartungswertes) und 83,1 mg/kg Clothianidin auf (ca. 1,6 % des Erwartungswertes). Der Wert für Clothianidin ist zwar geringfügig höher als die angenommene Abgrenzung von 1 %, jedoch ist auch bei dieser Probe ist eine Beizung nicht eindeutig nachweisbar.

Bei einer Feldprobe wurde ein Wirkstoffgehalt von 127 mg/kg Clothianidin (ca. 2,4 % des Erwartungswertes) gefunden. Da die Probe aus dem Boden entnommen wurde und bereits gekeimt hatte, ist eine Reduzierung unbestimmten Ausmaßes des aufgetragenen Wirkstoffes durch Nässe und Diffusion in den Boden gegeben. Dennoch konnte der Wirkstoff Clothianidin eindeutig nachgewiesen werden.

Projektleitung: Dr. J. Rieder Projektbearbeitung: A. Haag Projektdauer: 2010

2.3.8 Deoxynivalenol-Monitoring (DON-Monitoring) von bayerischem Wintergetreide der Ernte 2010

Zielsetzung

Mit dem jährlichen DON-Monitoring soll die Belastung der Wintergetreide mit Deoxynivalenol überwacht und ein Vergleich zu den Vorjahren hergestellt werden.

Methode

Das Deoxynivalenol-Monitoring (DON-Monitoring) umfasste im Erntejahr 2010 insgesamt 172 Proben Winterweizen und 60 Proben Winterroggen. Die Probenziehung erfolgte durch die Ämter für Landwirtschaft und Forsten. DON-Konzentrationen wurden mit HPLC-Trennung, Nachsäulenderivatisierung und Fluoreszenzdetektion gemessen.

Ergebnisse

Die folgenden Tabellen enthalten die wesentlichen statistischen Kennzahlen des DON-Monitorings 2010 im Vergleich zu den Ergebnissen der Jahre 2006 bis 2009.

Winterweizen

Tab. 7: DON-Monitoring von Winterweizen im Vergleich 2006 - 2010

Erntejahr	Probenzahl	DON-Werte in µg/kg					
		Mittel	Median	25 % Quartil	75 % Quartil	Maximum	
2010	172	396	167	47	499	3.865	
2009	173	256	155	48	319	2.365	
2008	175	186	80	35	197	3.236	
2007	175	229	72	24	223	3.288	
2006	173	220	70	20	220	7.570	

Bei Winterweizen zeigt sich gegenüber 2009 ein deutlich höherer arithmetischer Mittelwert und ein etwas erhöhter Median (siehe Tabelle 7). Dies ist bedingt durch eine Abnahme in den Gehaltsklassen $41-200~\mu g/kg$ und $201-500~\mu g/kg$. Entsprechend haben die oberen Gehaltsklassen $>500~\mu g/kg$ deutlich zugenommen. Wie in den Jahren zuvor gibt es keine Probe mit einem Gehalt $>5.000~\mu g/kg$, jedoch überschreiten 12 Proben (7 %) den EU-Rohwarengrenzwert von $1.250~\mu g/kg$. 2009 waren es lediglich 3 Proben (1,8 %).

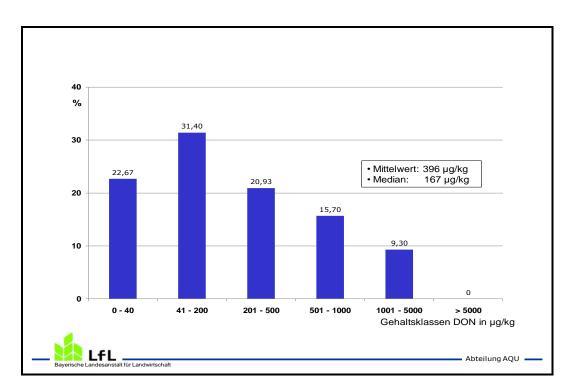


Abb. 15: Verteilung der DON-Ergebnisse von Winterweizen der Ernte 2010

Die mittleren DON-Gehalte für die Jahre 1990 bis 2010 werden in der Abbildung 16 zusammenfassend dargestellt. Es zeigte sich, dass 2010 ein Jahr mit deutlich höherer Fusarientoxinbelastung war, als dies in den letzten fünf Jahren der Fall war. Der Mittelwert lag mit nahezu 400 μ g/kg deutlich über dem langjährigen Mittel von 300 μ g/kg, erreichte aber nicht den Wert ausgesprochener Fusarienjahre wie 1998 oder 2002.

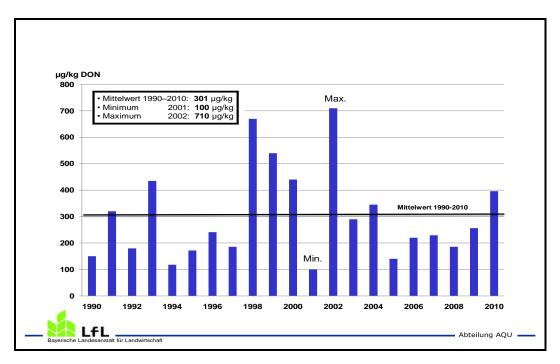


Abb. 16: Mittlere DON-Gehalte der bayerischen Winterweizenernte im Zeitraum 1990-2010

Winterroggen

Ähnlich wie beim Weizen sind auch die DON-Werte des Winterroggens (siehe Tabelle 8) verglichen mit den Vorjahren deutlich gestiegen.

Tab. 8: DON-Monitoring von Winterroggen im Vergleich 2006 - 2010

Erntejahr	Probenzahl	DON-Werte in µg/kg					
		Mittel	Median	25 %	75 %	Maximum	
				Quartil	Quartil	iviaxilliulli	
2010	60	150	55	18	195	1.201	
2009	60	94	53	29	103	523	
2008	60	33	19	9	43	187	
2007	60	43	22	14	41	833	
2006	59	70	30	10	60	810	

Insbesondere ist eine Zunahme in der Gehaltsklasse von $201 - 500 \,\mu\text{g/kg}$ und eine deutliche Abnahme in der Gehaltsklasse von $41 - 200 \,\mu\text{g/kg}$ zu verzeichnen. Eine Probe liegt mit $1.200 \,\mu\text{g/kg}$ nah am EU-Rohwarengrenzwert von $1.250 \,\mu\text{g/kg}$. (siehe *Abb. 17*)

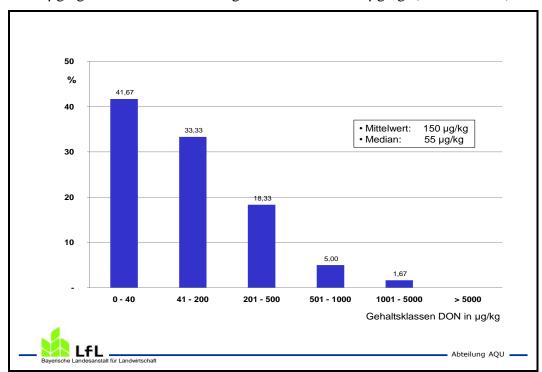


Abb. 17: Verteilung der DON-Ergebnisse von Winterroggen der Ernte 2010

Projektleitung: Dr. J. Rieder

Projektbearbeitung: G. Clasen, S. Würzinger

Projektdauer: Daueraufgabe

2.3.9 Neuere Fusariummetaboliten: "Fungerin"

Zielsetzung

Fungerin ist ein bislang wenig untersuchter Sekundärmetabolit aus *Fusarium tricinctum*. Bei der Substanz handelt es sich um ein 4,5-disubstituiertes N-Methylimidazol (Abb 18.) mit breiter biologischer Wirkung. Hervorzuheben sind, sein cytotoxisches Potential (Hemmung der Zellteilung), seine antifungische Aktivität gegen Pilze und eine insektizide Wirkung gegen Salzwasserkrebschen (Artemia salina). Die Aktivität gegen Salzwasserkrebschen ist ein universeller Test auf potentiell toxische Stoffe. Fungerin ist in diesem Test etwa so aktiv wie die Trichothecene, die weit verbreitete Fusarientoxine sind.

Fungerin

Abb. 18: Struktur von Fungerin

In einem ersten Versuch sollte untersucht werden, ob Fungerin in Proben bayerischen Getreides nachzuweisen ist, um zu sehen, ob die Verbindung unter natürlichen Bedingungen auf dem Feld gebildet wird. Dazu wurden Proben ausgesucht, die einen überdurchschnittlich hohen Besatz an *Fusarium tricinctum* aufwiesen.

Methode

Die Probenextrakte wurden nach kurzer Vorreinigung über Festphasenextraktion und Flüssig-Flüssig-Verteilung mittels Hochdruckflüssigchromatographie und UV-Detektion gemessen.

Ergebnisse

In einer Probe konnte Fungerin nachgewiesen werden (Abb. 19).

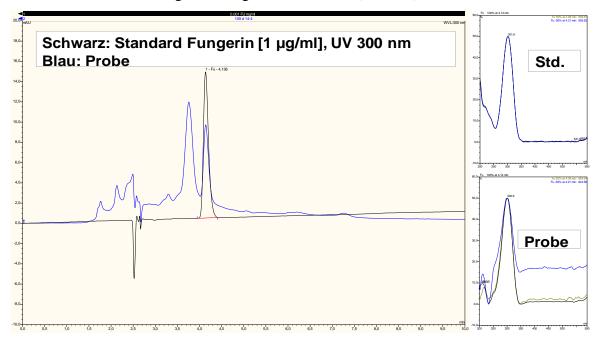


Abb. 19: Überlagertes HPLC-Chromatogramm und UV-Spektren von Fungerin aus einer Weizenprobe und eines Standards

Eine erste Abschätzung ergab einen Gehalt in der Größenordnung um 7 μ g/kg. Dieser sehr geringe Wert spricht nicht dafür, dass von der Substanz eine größere Gefahr für die Nahrungskette ausgeht.

Projektleitung: Dr. J. Rieder
Projektbearbeitung: A. Haag, G. Clasen

Projektdauer: 2010

2.3.10 Versuche zur Analytik von Scopoletin in Kartoffeln und Thaxtomin A in Kulturbrühen phytopatogener Bodenbakterien

Zielsetzung

In Zusammenarbeit mit IPZ 3b wurden erste Versuche zur Analytik von Scopoletin in Kartoffeln und Thaxtomin A in Kulturbrühen phytopathogener Bodenbakterien unternommen. Durchgeführt wurden die Untersuchungen zur analytischen Hilfestellung bei Fragen zur Pflanze-Pathogen Interaktion. Aus früheren Arbeiten lag die Verbindung Scopoletin noch als Standard vor, Thaxtomin A ist käuflich.

Methode

Durch Extraktion befallener und gesunder Kartoffeln konnte eine erste Abschätzung über den Gehalt an Scopoletin gemacht werden. Scopoletin lässt sich aufgrund seiner starken Fluoreszenz (Abb. 20) leicht mittels Fluoreszenzdetektion bei 366 nm im 1 ppb-Bereich nachweisen.

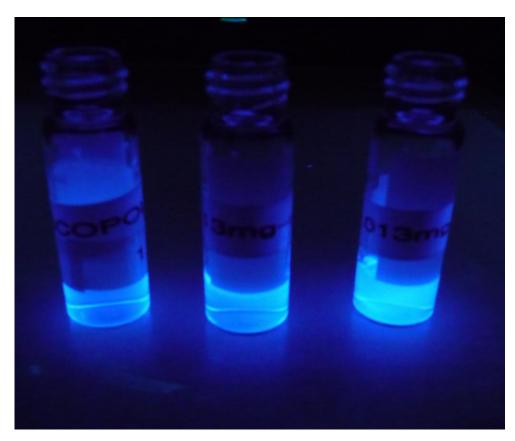


Abb. 20: Fluoreszenz von Scopoletin-Standardlösungen unter UV-Licht (366 nm).

Thaxtomin A wird mit UV-Detektion bei 247 nm und Lichtstreuung mit dem Lichtstreudetektor gemessen. Wie zu erwarten war, ist die Empfindlichkeit nicht sehr hoch. Es kann bei beiden Detektoren bis in den Bereich um 5 ppm gemessen werden.

Ergebnisse

Dies dürfte für eine Analytik dieser Verbindung in Kartoffeln nicht ausreichen, wie erste Messungen zeigten. Da Thaxtomin A bereits in nanomolaren Konzentrationen biologische Wirkung zeigt, wird es mit UV- und Lichtstreudetektion nicht möglich sein, in diesen Bereich vorzudringen und zu messen. Die Messgenauigkeit reicht jedoch aus, um Kulturbrühen isolierter Bakterien-Stämme miteinander zu vergleichen.

Projektleitung: Dr. J. Rieder

Projektbearbeitung: G. Clasen, Dr. J. Rieder Kooperation: Dr. J. Leiminger (IPZ 3b)

Projetdauer: 2010

2.3.11 Bestimmung des Porenvolumens in Backstücken

Zielsetzung

Bevor eine neue Weizensorte zugelassen wird und in den Anbau geht, müssen im Rahmen der Landessortenversuche (LSV) Qualitätsmerkmale getestet werden, die durch bestimmte Inhaltsstoffe als auch durch besondere Eigenschaften des Getreides determiniert sind. Besonders wichtig sind dabei die Backeigenschaften der Mehle. Visuell bestimmte Eigenschaften wie Teigoberfläche, Elastizität, Ausbund, Bräune, Krustenrösche,

Krumenelastizität und die gleichmäßige Porenverteilung werden im Backversuch erfasst. Diese Beurteilungen sind sehr schwer objektiv zu erfassen, da sie zwar von geschultem Fachpersonal durchgeführt werden, jedoch das subjektive Empfinden des Einzelnen dabei nicht auszuschalten ist. So wird z.B. gegenwärtig die Klassifizierung der Porosität eines Backstückes nach der Dallmannschen Porentabelle (siehe Abb. 21) durchgeführt. Man vergleicht also ein vorgegebenes schwarz/weiß Foto mit einem realen Backstück und versucht Porengrößen und Verteilung zu vergleichen.

Im Sachgebiet AQU4 wurde versucht im Rahmen eines Praktikums neue Ansätze zur automatischen, digitalen Erkennung von Poren zu entwickeln. Es wurde mittels verschiedener Algorithmen aus der digitalen Bildbearbeitung versucht, Poren in einer digitalen Aufnahme einer Backstückscheibe zu erkennen. Dadurch war es möglich, das Backstück- und Porenvolumen zu berechnen und im Weiteren die Porenverteilung im Backstück zu beurteilen.

Die ersten Tests bestätigen eine Übereinstimmung der rechnerisch ermittelten Volumina mit den nach dem Verfahren der Verdrängung bestimmten Backstückvolumen.

Die Verteilung der Poren in Gebäckstücken wurde bisher visuell beurteilt. Ein Hilfsmittel dabei waren die Porenbilder nach Dallmann (1941). Die Porenbilder wurden unterteilt in: gleichmäßig, ziemlich gleichmäßig und ungleichmäßig.

Bis heute ist dies die gängige Praxis zur Beurteilung von Backwerken.

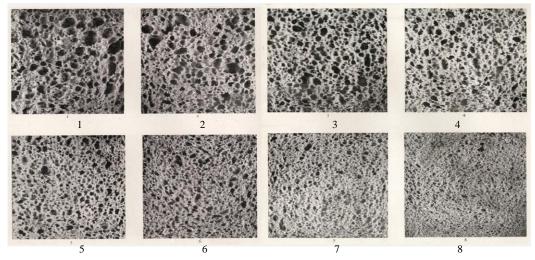


Abb. 21: Porentabelle von H. Dallmann

Nur dem geschulten Auge ist es möglich, aus diesen Musterbildern diese Klassifizierung sicher durchzuführen.

Methode

Bei AQU wurde eine Methode entwickelt, mit der mit Hilfe einer computergestützten, fotographischen Technik eine Auswertung von Porengrößen im Backstück bearbeitet werden kann. Dazu werden aus einem Gebäck repräsentative Scheiben herausgeschnitten. Diese Scheiben werden fotografiert und mit Hilfe einer Bilderkennungssoftware die Porenanzahl, die Größe und die Verteilung der Poren im Gebäck bestimmt. Mit statistischen Auswerteverfahren werden Häufigkeitsverteilungen automatisch ausgewertet und erstellt.

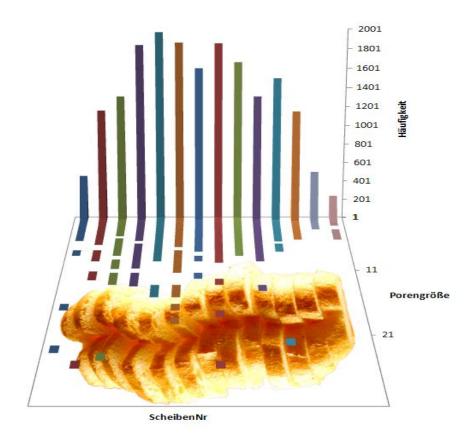


Abb. 22: Histogramm der Porenverteilung aus zwei Perspektiven

Geht man in der Abbildung 22 von links nach rechts durch die Grafik, so erkennt man in der flachen Ebene die Porengrößen und in der senkrechten Achse dazu die entsprechenden Häufigkeiten. Aus der Verteilung der Porengrößen und deren Häufigkeit lässt sich ein Maß für die Porenverteilung im Backstück ermitteln.

Die Porenverteilung eines Backstücks in einem Histogramm darzustellen ist ein erster Schritt zur Automatisierung und führt zu einer objektiven Beurteilung der Porenverteilung im Rahmen der Backqualität.

Ergebnisse

Tests zeigten, dass die Porenbestimmungen nun in digitaler Form zuverlässiger, objektiver und reproduzierbarer sind als die Handauswertung. Es konnte zudem bestätigt werden, dass es gute Übereinstimmungen mit dem, nach dem Verfahren der Verdrängung bestimmten Backstückvolumen (Rapid Mix Test) gab.

Projektleitung: G. Henkelmann

Projektbearbeitung: H. Grameier, N. Ruhland, M.C. Kreitmayr

Projektdauer: bis 2011

2.3.12 Ringversuche für Labordienstleistungen im Bereich der Biogasproduktion

Zielsetzung

Bei dem Gärprozess produzieren die Mikroorganismen im Fermenter einer Biogasanlage bis zu zwei Drittel Methan, daneben Kohlendioxid, Sauerstoff, Stickstoff und geringe Mengen weiterer Gase. Verwertbar ist dabei nur das Gas Methan. Dabei handelt es sich bei dem Gesamtprozess der Methangaserzeugung um einen mehrstufigen, komplexen Vorgang, der durch biologische, chemische und physikalische Parameter bestimmt ist.

Aber auch die Art der Anlage, ob es sich um eine reine NawaRo-Anlage, oder um eine Biogasanlage mit Gülle oder Zuschlägen anderer organischer Stoffe, wie z.B. Speisereste, Produkte aus der Landschaftspflege, Speiseöle und Fette handelt, bestimmt den ökonomischen Nutzen einer Anlage. Zudem haben die eingesetzten Substrate unterschiedliche Gasausbeuten.

Werden die Substrate falsch dosiert oder fehlen wichtige Spurenelemente zur Ernährung der Bakterien oder steigt der Anteil unerwünschter Stoffe im Fermenter an, so kann es zu erheblichen Störungen im Biogasprozess kommen. Die Folge ist eine verminderte Gasausbeute, eine suboptimale Gasproduktionsleistung und im Extremfall der Zusammenbruch des Betriebs einer ganzen Anlage.

Dies kann zu erheblichen finanziellen Einbußen und immensen Folgekosten führen. Daher ist es sehr wichtig, eine optimale Betriebsführung im kontinuierlichen Betrieb zu gewährleisten und durch ständige Eigenkontrollen, Messungen und Laboranalysen die Substrate und die Prozessgülle zu überwachen. Wenn ausbringfähige Gärreste entsprechend den gesetzlichen Bestimmungen als Wirtschaftsdünger wieder ausgebracht werden sollen, sind zudem Inhaltsstoffanalysen zwingend vorgeschrieben.

Die Laboranalytik spielt daher für den Betrieb einer Biogasanlage eine große Rolle.

Eine im Jahr 2008 von der LfL und der Arbeitsgemeinschaft Landtechnik und landwirtschaftliches Bauwesen in Bayern (ALB) bei Landtechnikberatern, Biogasfirmen und Anlagenbetreibern durchgeführte Bedarfsanalyse zeigte, dass es in Bayern einen erheblichen Bedarf zur Verbesserung der Qualität und Verbreitung von Beratungs-, Schulungs- und Labordienstleistungen für die Biogasproduktion gibt.

Methode

Daher wurde im Rahmen des Biogasforums Bayern die Erstellung eines Qualitätssicherungssystems für die Anbieter von Labordienstleistungen angestrebt.

Zu diesem Zweck wurden bereits zwei Ringuntersuchungen mit unterschiedlichen Proben (Substraten, getrockneten und flüssigen Fermenterinhalten) und verschiedenen, für die Prozessführung wichtigen Untersuchungsparametern abgeschlossen und mit der Software "ProLab Plus 2005" ausgewertet. Ein erneuter Ringversuch befindet sich für 2011 in der Planung.

Ergebnisse

Die erzielten Ergebnisse des ersten Ringversuchs weisen vor allem bei den Parametern, die nicht nach einheitlichen Analysevorschriften untersucht werden, große Varianzen auf.

Zum Beispiel wurden im 1. Ringversuch für den Gehalt an Essigsäure Werte zwischen 500 mg/l und 2.800 mg/l ermittelt. Ebenso lässt die erzielte Standardabweichung von knapp 20 % den Schluss zu, dass durch die unterschiedlichen Untersuchungsmethoden keine zufriedenstellende Präzision der Ergebnisse erreicht wurde.

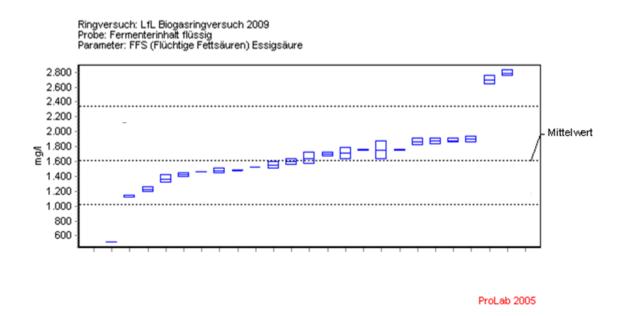


Abb. 23: Beispiel für die Darstellung der Messwerte für Essigsäure der teilnehmenden Labore im Ringversuch Biogas

Ziel dieser Ringversuche ist einerseits, die Qualität der angebotenen Dienstleistungen zu prüfen und den Laboratorien die Möglichkeit zu geben, ihre Analytik zu überprüfen und zu vergleichen, zum anderen ist für den dritten Ringversuch erstmalig geplant, die Anbieter von Labordienstleistungen, die erfolgreich teilgenommen haben, aufzulisten und zu veröffentlichen.

Alle Ergebnisse dieser Studie werden in verbesserte Beratungsunterlagen einmünden, die für alle Beteiligten, Betreiber und Berater von Biogasanlagen, Biomasseproduzenten und Gärrestverwerter gleichermaßen zu einem genaueren Verständnis der Zusammenhänge im Prozess, zur Erhöhung der Produktivität und zur besseren Interpretation von Analysenergebnissen führen sollen.

Projektleitung: G. Henkelmann
Projektbearbeitung: K. Meyer zu Köcker

Projektdauer:: bis 2012

2.3.13 Nahinfrarotspektroskopie, ein Instrument zur quantitativen und qualitativen Bestimmung von Mykotoxinen im Weizen

Zielsetzung

Getreide für den Nahrungs- oder Futtermittelbereich sollte im Sinne der Erzeugung gesunder Ernährung von hoher Qualität und geringer Toxinbelastung sein. Hohe Belastungswerte stellen eine Gefahr für die Gesundheit des Menschen, aber auch von Tieren dar. Das wichtigste Mykotoxin im Weizen ist das Deoxynivalenol (DON) aus der Gruppe der Trichothecene. Es wird primär von der Gattung Fusarium graminearum gebildet. Nach der Verordnung (EG) Nr. 1881/2006 sind für Getreide und daraus erstellte Produkte (Teigwaren) Höchstgehalte an Fusarientoxinen festgelegt. Für unverarbeitetes Getreide (Weizen) darf ein Höchstgehalt von 1.250 µg/kg nicht überschritten werden. In der Praxis

ist Winterweizen nach Vorfrucht Mais und ungünstigen klimatischen Bedingungen einem erhöhten Befallsrisiko ausgesetzt. Der Landwirt kann zwar durch Maßnahmen der Bodenbearbeitung, Sortenwahl und Fungizidanwendung das Gefährdungspotential wesentlich verringern, jedoch gelangen immer wieder belastete Erntepartien in den Handel.

Die gegenwärtig zur Verfügung stehenden Untersuchungen und Tests (ELISA, HPLC, QuickStick) sind sehr zeitaufwändig und auch teuer. Daher ist die Entwicklung einer schnellen Methode zum Scannen von Getreidepartien ein wesentliches Ziel des Getreidehandels und der verarbeitenden Industrie. Die Untersuchungen mit Hilfe der Nahinfrarotspektroskopie (NIRS) ermöglichen eine Analyse innerhalb kurzer Zeit, um eventuell belastete Partien vor der Einlagerung oder bei Anlieferung an der Mühle zu erkennen.

Methode

Neu an den vorliegenden Untersuchungen ist die Kombination von Methoden der Bildanalyse mit den Spektren der Nahinfrarotspektroskopie. Als Probenmaterial wurde Winterweizen aus Sortenversuchen der Landesanstalt für Landwirtschaft aus den Erntejahren 2007 bis 2009 verwendet. Um Effekte zu erkennen, wurden Proben von fünf Versuchsorten und sechs Sorten untersucht. Die Kornzahl je Probe variierte von 2.500 bis 3.400. Mit Hilfe eines Einzelkornmessgerätes der Fa. Perten (Vorserienprodukt) wurden Spektren und Farbwerte einzelner Körner aufgenommen und die DON-Gehalte der einzelnen Körner anhand einer Kalibration berechnet.

Ergebnisse

Auf Grund der Rotfärbung belasteter DON-Körner wurde erwartet, dass der Rotwert in einer engeren Beziehung zu dem DON-Wert steht. Die Farbauswertung ergab jedoch, dass Grün- und Blauwerte und die Volumenbestimmung diese Beziehung eindeutiger beschreiben. Dies ist exemplarisch an der folgenden Abbildung dargestellt.

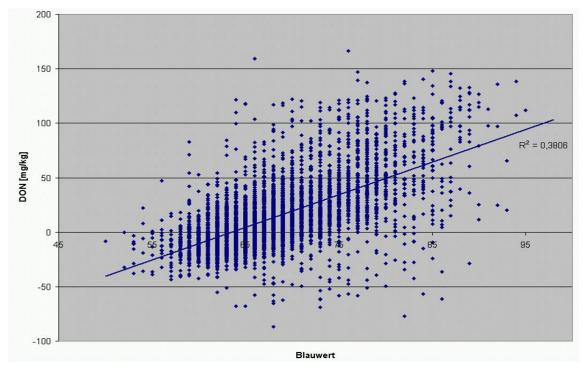


Abb. 24: Korrelation von Farbmessungen (am Beispiel Blau) mit DON-Messungen bei Praxispartien von zwei Standorten für die Sorte Cubus

NIRS scheint in der Kombination mit der optischen Auswertung der Weizenkörner gut geeignet, den Gesamt-DON-Gehalt abzuschätzen. Die Ergebnisse zeigen das Potential von NIRS zur Qualitätskontrolle von landwirtschaftlich erzeugten Produkten auf.

Projektleitung: G. Henkelmann Projektbearbeitung: M.C. Kreitmayr

Projektdauer: bis 2011

2.3.14 Einführung eines Rohdatenmanagementsystems (RMS)

Zielsetzung

Analysenergebnisse aus dem Futtermittellabor von AQU 5 sollen in Zukunft "online" in eine Futtermittel- und Substratdatenbank eingespeist werden und dem Institut für Tierernährung (ITE) und dem LKV zur weiteren Nutzung zur Verfügung gestellt werden.

Methode

Bei AQU 5 wurde das Rohdatenmanagementsystem (RMS) "Praefekt" (Firma Pragmatis; Neufahrn/Freising) installiert. Dieses Programm kommuniziert bidirektional mit der Futtermittel- und Substratdatenbank. Innerhalb des Labors werden Analyse- und Wägedaten automatisch von dem System erfasst, die Einzeldaten auf Analysenspielräume, Mittelfähigkeit und Plausibilität geprüft und das Laborpersonal bei Bedarf auf die Wiederholung der Analyse hingewiesen. Teilergebnisse einer Futtermittelprobe werden in einer Labordatenbank unter der jeweiligen Labornummer zusammengeführt und nach Freigabe in die zentrale Futtermittel- und Substratdatenbank zurückgespiegelt.

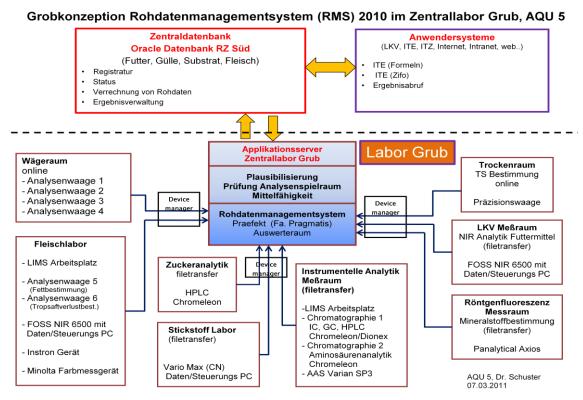


Abb. 25: Grobkonzept und Funktionalitäten des RMS im Labor Grub (AQU 5)

Mit entsprechender Zugangsregelung zur zentralen Datenbank können sowohl das LKV als auch die Versuchsansteller des ITE die Proben zur Untersuchung anmelden oder Informationen zum Bearbeitungsstatus abrufen und haben Zugriff auf bereits freigegebene Ergebnisse.

Ergebnisse

Das Projekt wird in Zusammenarbeit mit ITE bearbeitet. In einem ersten Schritt werden Analysenergebnisse aus der LKV Futtermitteluntersuchung und von Untersuchungen, die im Auftrag von ITE durchgeführt wurden in das System eingebunden. Im Weiteren werden die Untersuchungsergebnisse aus dem Bereich Qualität tierischer Produkte, also IMF, Fettsäuremuster, Tropfsaftverlust, Zartheit u.a. eingebunden und mit der Schlachtdatenbank verknüpft.

Projektleitung: Dr. M. Schuster

Projektbearbeitung: Dr. M. Schuster, Fa. Pragmatis

Projektdauer: 2010 - 2012

2.3.15 Untersuchungstätigkeit für das Institut für Tierernährung und Futterwirtschaft (ITE)

Im Bereich der Futtermittelanalytik wurden insbesondere Analysen für Versuchsanstellungen von ITE durchgeführt. Dabei lagen die Schwerpunkte auf den Gebieten der Eiweißversorgung, des Aufwuchsverlaufes im Grünland und der effizienten Futterwirtschaft einschließlich der Erhebung von Nährstoffströmen. Im Folgenden sind einige Projekte und Versuchsfragen aufgeführt, die von AQU 5 analytisch begleitet wurden. Ergebnisse dazu sind im Jahresbericht 2010 des Instituts für Tierernährung und Futterwirtschaft nachzulesen.

Mit der Inbetriebnahme des Lehr-, Versuchs- und Fachzentrums (LVFZ) für Schweinehaltung in Schwarzenau und deren Versuchseinrichtungen wurden auch zahlreiche Proben für die Versuchsanstellungen des LVFZ Schwarzenau untersucht. Außerdem erfolgten Analysen für das LVFZ Kitzingen im Bereich der Geflügel und Kleintierversuche.

ITE

- Aufwuchsverlauf von Dauergrünlandbeständen
- Effiziente Futterwirtschaft und Nährstoffflüsse in Futterbaubetrieben
- DLG Siliermittel-Nachprüfung
- Rostocker Fermentationstest (RFT): Nachprüfung biologischer Siliermittel mit DLG Gütezeichen
- Verfütterbare Siloabdeckung aus nachwachsenden Rohstoffen
- Zum Futterwert von Soja- und Rapsextraktionsschrot in der Schweinefütterung
- Zum Futterwert von Nebenerzeugnissen des Brauereigewerbes in der Schweinefütterung
- Verdauungsversuche mit heimischen Vollfettsojabohnen unbehandelt/geröstet/extrudiert
- Verdauungsversuch mit Rohfaserträgern
- Verdauungsversuche mit Prestarter f

 ür Ferkel

LVFZ Schwarzenau

- Einfache Phasenfütterung in der Ferkelaufzucht und in der Mast
- Einfache Multiphasenfütterung in der Ferkelaufzucht: Verschneiden mit Getreideschrot
- Rohe Sojabohnen in der Ferkelaufzucht und Mast.
- Ferkelfütterung mit heimischen Sojaprodukten: Rationsgestaltung mit 15 % Sojakuchen extrudiert bzw. 10 % Vollfettsojabohnen geröstet
- Ferkelfütterung mit heimischen Sojaprodukten: Sojakuchen (extrudiert) und Vollfettsojabohnen (geröstet) als alleinige Eiweißfutter
- Weizen verschiedener Qualitätsgruppen in Mastrationen
- Endmast mit Mineralfutterreduzierung (2, 1,5, 1, 0 %)

Intensive Arbeiten wurden zur Eiweißqualität durchgeführt. Mittels erweitertem Hohenheimer Futterwerttest (HFT) wurden das verdauliche Eiweiß nXP bzw. der unverdauliche Eiweißanteil UDP analysiert. Bei dieser Methodik wird die trockene und vermahlene Probe mit einer Pansensaft/Spurenelement-Mischung versetzt und im Brutschrank bei 39 °C inkubiert. Unter diesen Bedingungen wird das Futtereiweiß vergleichbar dem Wiederkäuermagen unter Gasbildung abgebaut. An Hand der Ammoniumstickstoffgehalte der Pansensaftlösungen nach 6 und 24 Stunden kann das abbaubare Protein bzw. die UDP-Fraktion errechnet werden. Es zeigte sich, dass sich in wärmebehandelten Futtermitteln, also bei Heu und Cobs, der Anteil an abbaubarem Protein zunimmt. Die Arbeiten erfolgten im Rahmen einer Promotion in Zusammenarbeit mit dem Institut für Tierernährung. Ein Antrag für ein Folgeprojekt zur Erarbeitung von NIR Kalibrierungen für nXP für Grassilagen Heu und Cobs wurde gestellt.

2.3.16 Untersuchungstätigkeit für das Institut für Tierzucht (ITZ)

Im Untersuchungsbereich Fleischqualität wurden regelmäßig Muskelfleischproben aus den Leistungsprüfungen Grub und Schwarzenau auf den Gehalt an intramuskulärem Fett (IMF) untersucht. Von den Proben der Leistungsprüfungsanstalt Grub wurden auch der Tropfsaftverlust unter Schutzgaslagerung ermittelt. Die Ergebnisse bei den Mutterrassen liegen deutlich unter 3 % Tropfsaftverlust, bei der Vaterrasse Pietrain liegt das Mittel mit 3,71 % deutlich höher. Auswertungen sind im Jahresbericht des ITZ nachzulesen.

Im Berichtsjahr wurde die Untersuchung auf alle Kreuzungstiere ausgedehnt. Für konkrete Aussagen liegen noch nicht genügend Zahlen vor.

Abb.26: Bestimmung des Tropfsaftverlustes von Schweinefleisch unter Schutzgasathmosphäre

2.3.17 Untersuchungen für das Institut für Fischerei (IFI)

Fütterungsversuch mit taurinhaltigem Fischfutter

Taurin ist ein freies biogenes Amin und kommt vor allem in Muskel, Leber, Gehirn und im Zentralnervensystem vor. Taurin übt wichtige biochemische und physiologische Funktionen aus wie Verbesserung der Fettverdauung und Bildung von Synapsen zur Impulsübertragung. Außerdem wird vermutet, dass die Substanz Taurin wachstumsfördernd wirkt.

Für das IFI wurden die freien Aminosäuren in 70 Forellenfilets analysiert. Schwerpunkt lag auf der Erfassung der Verbindung Taurin. Dazu musste die herkömmliche Aminosäureanalytik um diesen Wirkstoff erweitert werden. Zunächst wurde geprüft, ob Taurin zusammen mit anderen freien Aminosäuren in einem chromatographischen Lauf erfasst werden kann. Hierbei ist wichtig, dass das Taurinsignal nicht von anderen Inhaltsstoffen überlagert bzw. nicht weit genug von anderen Signalen abgetrennt wird. Im nächsten Schritt wurde die Wiederfindung dieser Substanz in Additionsversuchen geprüft. An Hand der gespikten Fischfiletproben konnte über das Signal/Rauschverhältnis die Nachweiss- und Bestimmungsgrenze ermittelt werden.

Wie aus dem Standardchromatogramm ersichtlich ist, eluiert Taurin nach ca. 6 Minuten von der Trennsäule. Dieser Bereich zwischen Cystin und Asparaginsäure wird von keiner anderen Aminosäure überlagert. Taurin kann also zusammen mit anderen freien Aminosäuren analysiert werden. Die Nachweisgrenze liegt bei 1 mg/kg Frischmasse Fisch.

Die Tauringehalte streuten je nach Fütterungsvariante zwischen 87 und 600 mg/kg Frischmasse. Im Futter betrugen die Gehalte zwischen 400 und 1.000 mg/kg.

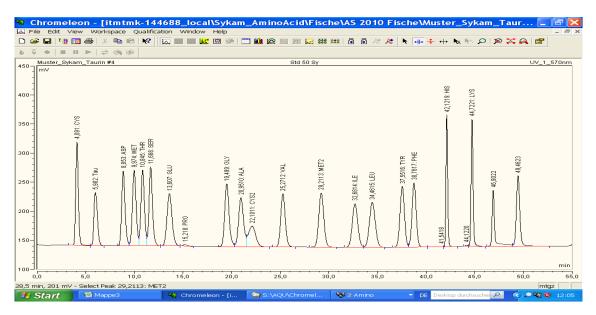


Abb. 27: Aminosäure-Standardchromatogramm mit Taurin (RT5,882 Min)

Projektleitung: Dr. M. Schuster

Projektbearbeitung: Alle MitarbeiterInnen von AQU 5

Projektdauer: Daueraufgabe

2.3.18 Futtermittellabor des Landeskuratoriums der Erzeugerringe für tierische Veredelung Bayern e.V.

Im Untersuchungsjahr wurden insgesamt 18.790 Futterproben verschiedenster Art im Futtermittellabor Grub untersucht. 4.198 Proben kamen per Post oder wurden persönlich abgegeben. Die anderen Proben wurden über den bayernweiten Kurierdienst nach Grub zur Untersuchung gebracht. Die Ergebnisse sind die Grundlage für die die Fütterungsberatung und Rationsgestaltung der landwirtschaftlichen Betriebe Bayerns.

Es handelte sich um 1.952 Grünfutterproben, 14.490 Gärfutterproben (davon 9.066 Grassilagen und 4.639 Maissilagen), 261 Heuproben, 253 Kobsproben, 741 Körnerfrüchte, 170 Ölschrote, 138 Rinder- und 421 Alleinfutter und Ergänzer für Schweine. 326 sonstige Futtermittelproben wurden bearbeitet. Im Vergleich zum Vorjahr stieg der Untersuchungsumfang um 5 %. In 690 Substratproben für die Biogasproduktion wurde der Trockenmassegehalt und in 175 Befunden der zu erwartende Methangasertrag auf der Basis der Rohnährstoffe ausgewiesen. Die Lysinuntersuchung wurde 253mal und die Analyse auf die 4 essentiellen Aminosäuren 145mal beauftragt.

							Unt	tersuchui	ngsart				
Futterart	Summe		NIR					(Chemie				
	Proben	Weender	Weender	Weender	Stärke	Zucker	Nitrat	Gär-	Ammoniak	Lysin	AS4	Biogas	TM
		Gesamt						säuren				ausbeute	(Substrat)
Wiesengrassilagen	9066	9066	8969	97		18	78	222	23		2	49	
Maissilage	4689	4608	4446	162	43		45	68	5		1	59	81
Grünmais	1059	475	419	56	15		14					19	584
Grünfutter o. Mais	893	872	850	22		12	6					11	21
Grassilagen sonstige	695	695	577	118		13	27	23	2			29	
Gerste	367	367	349	18	12	11				41	19		
Kraftfutter Schwein	359	362	288	74	32	29				89	75		
Weizen	354	354	337	17	17	8				55	18	3	
Heu/Stroh	261	259	213	46		17		2				1	
Cobs	253	253	237	16		15	2					1	
andere Futter	243	241	63	178	18	12	2	1	1	11	7		2
Ölschrote	170	170	146	24		3			1	28	7		
TMR	107	106	81	25	20	16							1
CCM	73	72	50	22	18					6	1	1	1
Kraftfutter Rind	59	59	32	27	17	17						1	
Leguminosen	46	46	18	28	8	8				4	7		
Maiskornsilagen	40	39	18	21	7					9	2	1	
Molke	22	22	2	20						5	2		
Maiskörner	20	20	12	8	10					4	4		
Hafer	14	14	7	7	7	2				1			
Summe	18790	18100	17114	986	224	181	174	316	32	253	145	175	690

Tab. : Probenaufkommen und Untersuchungsstatistik 2010 im LKV Futtermittellabor

Weender: TS, RA,RP,RFA,RFE,Stärke bzw. Zucker,

soweit für Energieberechnung notwendig zusätzlich ADForg bzw. NDForg (46 Proben), ELOS, Gasbildung (16 Proben) Der Anteil nasschemischer Untersuchungen beträgt 6 %

Tab.9: Probenaufkommen und Untersuchungsstatistik im LKV Futtermittellabor

Die Trocknung der frischen Futtermittelproben wurde hinsichtlich Trockenzeit und Temperatur umgestaltet. Die Proben wurden 18 Stunden bei 65 °C vorgetrocknet und anschließend vermahlen. Den tatsächlichen TS Gehalt erhält man durch Verrechnung des TS-Wertes aus der Vortrocknung mit dem Wert für die Analysentrockenmasse (berücksichtigt die Restfeuchte der Probe) aus der vermahlenen Probe (VDLUFA Methodenbuch II 3.1). Durch diese Umstellung konnten 4 statt der bislang 3 Trockenzyklen pro Woche (7 Tage) durchgeführt werden, so dass die Probenbearbeitung insbesondere in den probenintensiven Monaten von September bis Dezember deutlich verkürzt werden konnte.

Neben der alljährlichen Pflege und Erweiterung der NIR-Kalibrierfunktionen wurde mit der Entwicklung neuer Kalibrierungen für Luzerne und Luzernegras sowie deren Silagen und für Ackerbohnen und Erbsen begonnen. Diese Futtermittel gewinnen wegen der hohen Eiweißgehalte zunehmend an Bedeutung und werden wesentlich häufiger zur Untersuchung eingeschickt als früher, so dass sich der Arbeitsaufwand zur Erstellung von NIR Kalibrierungen durchaus vertreten lässt. Die Kalibrierdateien enthalten zwischen 125 und 310 referenzanalytisch untersuchte Proben und deren Spektren. Eine abschließende Freigabe muss noch erfolgen.

Wie im Vorjahr bei Grassilagen erfolgte in 2010 eine Ringuntersuchung an frischen Maissilagen. 5 Proben wurden sowohl nasschemisch als auch mittels NIR Spektrometrie vergleichend untersucht. Weitere Schwerpunkte dieser Ringuntersuchung waren die Probentrocknung, die Vermahlung sowie die Vorgehensweise bei der Trockenmassekorrektur und die Energieberechnung nach der derzeit gültigen Schätzformel.

Aus den Ergebnissen der 10 teilnehmenden Labore ging hervor, dass die Probenvorbereitung einheitlich durchgeführt und die Rohnährstoffgehalte, die zur Anwendung der neuen Schätzformel notwendig sind, aus nasschemischer Analytik und NIRS Verfahren gut übereinstimmen. Die auf Basis der unkorrigierten Rohnährstoffe berechneten Energien stimmten ebenfalls gut mit den Ergebnissen der Verdauungsversuche überein. Handlungsbedarf ergab sich bei der Trockenmassekorrektur, die in den 10 Laboren nicht einheitlich

durchgeführt wurde. Hierzu gibt es zwischenzeitlich eine Festlegung durch den AK Grundfutter des VDLUFA, so dass auch die trockenmassekorrigierten Daten nun zu einheitlichen Energiegehalten führen.

Bei den Mineralstoffuntersuchungen bestand das größte Interesse bei den Mengenelementen einschließlich Kupfer und Zink (Block M) gefolgt vom Block O, der zusätzlich die Anionen Schwefel und Chlor sowie die Spurenelemente Mangan und Eisen beinhaltet. Insgesamt wurden 2.123 Untersuchungen angefordert, davon wurden 1.991 Analysen mittels Röntgenfluoreszenz Spektrometrie im Zentrallabor Grub untersucht. 132 Proben wurden im TGD Grub auf Selen untersucht. Auf Grund der stark steigenden Rohstoffpreise gewinnt die Mineralstoffanalytik zunehmend an Bedeutung. Nur durch Kenntnis der im Futter enthaltenen Elemente kann eine wirtschaftliche und bedarfsgerechte Fütterung erfolgen. Insbesondere bei Grassilagen ist die Streubreite der Mineral- und Spurenelementgehalte groß, so dass eine Untersuchung auf die Elemente des Mineralstoffblockes M dringend angeraten wird.

Tab. 10: Übersicht der durchgeführten Mineralstoffanalysen im Rahmen der LKV Futtermitteluntersuchung

ıngsblock	Untersuchungsparameter	Probenzahlen
	Ca, P, Na, K, Mg, Cu, Zn	1635
	CI, S, Mn, Fe	11
= M+N	Ca, P, Na, K, Mg, Cu, Zn, Cl, S, Mn, Fe	225
= M+ Selen	Ca, P, Na, K, Mg, Cu, Zn, Se	73
= N + Selen	Cl, S, Mn, Fe, Se	3
= O+ Selen	Ca, P, Na, K, Mg, Cu, Zn, Cl, S, Mn, Fe, Se	44
= Selen (TGD)	Se	12
		2123
(LKV Labor) (TGD Labor)		1991 132
•	= M+N = M+ Selen = N + Selen = O+ Selen = Selen (TGD)	Ca, P, Na, K, Mg, Cu, Zn Cl, S, Mn, Fe = M+N = M+ Selen = N + Selen = O+ Selen = Selen (TGD) Ca, P, Na, K, Mg, Cu, Zn, Cl, S, Mn, Fe Ca, P, Na, K, Mg, Cu, Zn, Se Cl, S, Mn, Fe, Se Ca, P, Na, K, Mg, Cu, Zn, Cl, S, Mn, Fe, Se Se (LKV Labor)

Ca	= Calcium	Cu	= Kupfer
Р	= Phosphor	Zn	= Zink
Na	= Natrium	CI	= Chlor
K	= Kalium	S	= Schwefel
Mg	= Magnesium	Mn	= Mangan
Se	= Selen	Fe	= Eisen

Umfangreiche Auswertungen der LKV Untersuchungen sind im Anhang des Jahresberichts 2010 des Instituts für Tierernährung enthalten. Neben den Rohnährstoff- und Energiegehalten verschiedener Grobfuttermittel sind Auswertungen zur Nitrat, Gärqualität und Aminosäuren dargestellt.

Der Probeneingang war auch dieses Jahr stark saisonal geprägt. In der Zeit vom 1.Oktober bis Jahresende gingen 10.595 Proben im Labor ein mit einer Spitze von 4.024 Proben im November. Zeitweise mussten bis zu 1.500 Proben in der Woche verarbeitet werden.

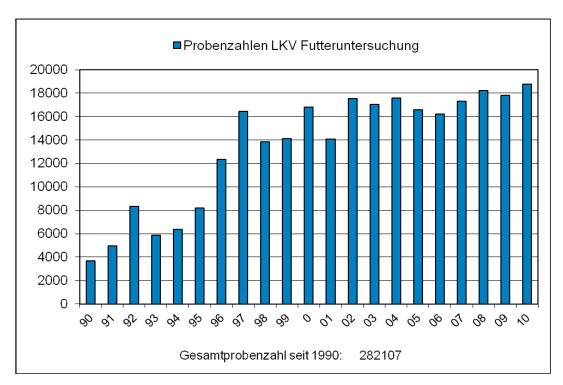


Abb. 28: Eingang von LKV Futterproben in der Zeit von 1990 bis 2010

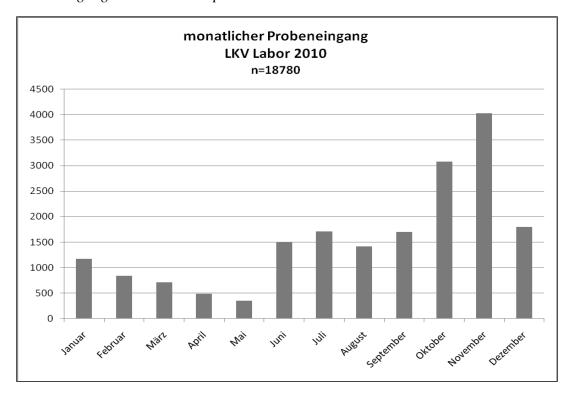


Abb. 29: Monatlicher Probeneingang in 2010

3 Ausbildung von Chemielaboranten

In AQU werden zurzeit neun Auszubildende zum Chemielaboranten ausgebildet. Die Grundausbildung incl. Arbeitssicherheit und Qualitätssicherung erfolgt in den Sachgebieten "Anorganik – Boden – Dünger – Pflanze" und "Rohstoffqualität pflanzlicher Produkte". Im Sachgebiet "Organik – Boden – Dünger – Pflanze" lernen sie organische Rückstandsanalytik und die Untersuchungen auf Mykotoxine kennen. Im Sachgebiet "Futtermittelanalytik und Qualität tierischer Produkte" werden sie eingewiesen in die Futtermittelanalytik und in physikalische Prüfverfahren bei tierischen Erzeugnissen. Zunächst werden bei AQU die wichtigsten Labortechniken vermittelt und die Auszubildenden werden mit spezieller Laborsoftware vertraut gemacht. Mit fortschreitender Ausbildung werden sie an immer komplexere Verfahren und Methoden herangeführt und die selbstständige Arbeit wird gefördert.

Neben diesem Ausbildungsteil bei AQU sammeln die Azubis Erfahrungen in den Instituten für Pflanzenbau und Pflanzenzüchtung (IPZ), Agrarökologie, Ökologischen Landbau und Bodenschutz (IAB) und Pflanzenschutz (IPS) mit den dort eingesetzten Untersuchungsmethoden. In diesen Bereichen arbeiten sie auch mit bei genomanalytischen Untersuchungen zur Bestimmung der pflanzlichen Genetik.

Zwischen AQU und dem Ausbildungszentrum der Technischen Universität München (AuTUM) besteht eine sehr enge Kooperation in Bezug auf die Ausbildung von Chemielaboranten. Bei AuTUM werden die Azubis in einer Art der überbetrieblichen Ausbildung in fachpraktische Fähigkeiten eingewiesen, die in den Laboren der LfL nicht vermittelt werden können. Damit wird sichergestellt, dass die Ausbildungsziele erreicht werden und die Auszubildenden auf die Berufsabschlussprüfung gut vorbereitet sind.

Nach erfolgreicher Ausbildung und Prüfung sind unsere Azubis verantwortungsvolle, selbstständige und technisch versierte Chemielaboranten, die für die Vielzahl der modernen Labors an der LfL geeignet sind. Darüber hinaus finden die bei uns ausgebildeten Chemielaboranten aber auch Arbeitsplätze in den vielfältigen Labors der Industrie und der Forschung.

Ein besonderes Highlight der Ausbildung, in dem AQU als Partner der Berufsschule engagiert ist, stellen die Auslandsaufenthalte der Auszubildenden dar, die im Rahmen des EU-Programms "Leonardo da Vinci" von AQU mitorganisiert werden. Bei derartigen Auslandsaufenthalten steht neben dem Kennenlernen von Laborarbeitsplätzen vor allem der Erwerb sozialer Kompetenz im Vordergrund. Im Berichtsjahr konnten drei Azubis von AQU dieses Programm mit einem dreiwöchigen Aufenthalt in Ungarn nutzen. Für diesen Auslandsaufenthalt wird den Teilnehmern ein Europapass ausgestellt, der eine spätere Arbeitsplatzsuche im europäischen Ausland erleichtert soll. Innerhalb des Programms "Leonardo da Vinci" betreute AQU im Jahr 2010 auch Auszubildende aus dem Partnerland Ungarn.

Projektleitung: D. Nast, Dr. R. Füglein

Projektbearbeitung: Alle MitarbeiterInnen in AQU

Projektdauer: Daueraufgabe

4 Veröffentlichungen und Fachinformationen

4.1 Veröffentlichungen

- Ellner, R., Mikolajewski, S. und Mitarbeiter (2010): Ergebnisbericht zum Ringversuch DSN 1.
- Ellner, R., Mikolajewski, S. und Mitarbeiter (2010): Ergebnisbericht zum Ringversuch DSN 2.
- Ellner, R., Mikolajewski, S. und Mitarbeiter (2010): Ringversuch 2010 nach FMA 1.2, 1.3, 1.4; LfL-Information.
- Ellner, R., Mikolajewski, S. und Mitarbeiter (2010): Pilot-Ringversuch 2010 Klärschlamm feucht nach FMA 1.2, 1.3, 1.4; LfL-Information.
- Henkelmann, G., Meyer zu Köcker, K., (2010): Chancen und Grenzen von Laborparametern zur Kontrolle des Gärprozesses in Biogasanlagen, Tagungsband des ersten C.A.R.M.E.N. Forschungs-Colloquiums "Nachwachsende Rohstoffe" im SAZ in Straubing 4. 5. November.
- Henkelmann, G., Meyer zu Köcker, K., (2010): Dritter Ringversuch, Ergebnisbericht August, LfL-Information.
- Henkelmann, G., Meyer zu Köcker, K., Götz, J., Beck. J., (2010): Biogasanlagen Laborparameter und Prozessüberwachung, LfL Schriftenreihe 7/2010; ISSN 1611-4159.
- Meyer zu Köcker, K., Henkelmann, G., (2010): Ringversuche zeigen unterschiedliche Ergebnisse, Biogas Journal, 13. Jahrgang, Nr. 2.
- Meyer zu Köcker, K., Henkelmann, G., (2010): Ringversuche für Labordienstleistungen im Bereich der Biogasproduktion, LABO, Magazin für Labortechnik und Life Science, Heft 5, 20-22.
- Meyer zu Köcker, K., Henkelmann, G., (2010): Laboranalytik im Bereich der Biogasproduktion, Bayerisches Landwirtschaftliches Wochenblatt. Im Druck.
- Sami, A.S., Schuster, M. und Schwarz, F.J. (2010): Performance, carcass characteristics and chemical composition of beef affected by lupine seed, rape seed meal and soybean meal. Journal of Animal Physiology and Animal Nutrition. In press.
- Schlegel, G., Schuster, M. und Schwarz, F.J. (2010): Effect of different pastures or indoor feeding on fatty acid composition of beef (Einfluss unterschiedlicher Grünfütterung auf der Weide und Stallfütterung auf das Fettsäuremuster von Rindfleisch). Proc. Soc. Nutr. Physiol., Posterbeitrag 122. VDLUFA Kongress 21.-24.09. in Kiel, 93.

- Schnell, J. und Schuster, M. (2010): Sichere Futtermittel in Bayern, Schule und Beratung 3-410, II-9 bis II-10.
- Schuster, M., Schwarz, F.J., (2010): Influence of a rumen-protected conjugated linoleic acid misture on carcass traits and meat quality in young swine, Journal of Animal Science. In press.
- Stadler, B., Kuzner, H., Trenkle, A., Henkelmann, G. (2010): Vergleich der FilterBag-Technik mit den konventionellen Methoden zur Bestimmung von NDF, ADF und ADL, Vortrag, Poster und Tagungsband des VDLUFA in Kiel

4.2 Tagungen, Vorträge, Vorlesungen, Führungen und Ausstellungen

4.2.1 Tagungen

Thema	Teilnehmer	Datum
Qualitätssicherungsmaßnahmen bei LKP-Auftragnehmerlaboren durch AQU	Laborleiter der LKP-Auftragnehmerlabore, Mitarbeiter von IAB, LWG und LKP (GF)	02.12.2010

4.2.2 Vorträge

Name	Thema/Titel	Veranstalter/Datum	Ort
Dr. Mikolajewski, S.	Düngemittelanalytik im Sachgebiet AQU 1 – Anorganik: Boden-Dünger- Pflanze	LfL, AQU / 24.02.2010	Freising
Henkelmann, G., Meyer zu Köcker, K.	Ringversuche für die Laboranalytik in der Biogasproduktion	VDLUFA Sitzung des Arbeitskreis Biogas / 01.03.2010	Oldenburg
Dr. Ellner, R.	Bayerisches Klärschlamm- netz; Zulassungsmodalitäten für Labore	Landesamt für Umwelt / 03.03.2010	München
Henkelmann, G., Meyer zu Köcker, K.	Ringversuche für die Laboranalytik in der Biogasproduktion	Tagung des Biogas Forum Bayern / 17.03.2010	Freising
Dr. Ellner, R.	Vorstellung der Abteilung Qualitätssicherung und Untersuchungswesen	LfL-Ausbildung 2010 LIA 09 06.05.2010	Freising

Name	Thema/Titel	Veranstalter/Datum	Ort
Dr. Schuster, M.	Futtermitteluntersuchung	LfL-Ausbildung 2010 LIA 09 Fachlehrgang: Tierische Erzeugung und Vermarktung / 21.05.2010	Grub
Dr. Ellner, R.	Bayerisches Klärschlamm- netz; Zulassungsmodalitäten für Labore	Landesamt für Umwelt / 09.06.2010	Nürnberg
Dr. Schuster, M.	Futtermittelanalytik und Qualitätssicherung im Labor	FÜAK, Seminar für Fütterungstechniker zur Milchviehfütterung / 29.06.2010	Hesselberg, Gerolfingen
Dr. Rieder, R.	Überblick Fusarientoxine	LfL, IPZ, Besuch Agraria-Gruppe (Brasilien) / 10.08.2010	Freising
Henkelmann, G., Meyer zu Köcker, K.	Statusvortrag/ Zwischenbericht/ Projektverlängerungsantrag	Koordinierungsgremium Biogas Forum Bayern / 06.10.2010	Freising
Henkelmann, G., Meyer zu Köcker, K.	Laboranalytik für Biogasan- lagen – Einblicke, Chancen und Risiken	Tagung des Biogas Forum Bayern / 20.10.2010	Freising
Henkelmann, G., Meyer zu Köcker, K.	Diskussion der Ergebnisse aus dem dritten Ringversuch	VDLUFA Sitzung des Arbeitskreis Biogas / 27.10.2010	Kassel
Henkelmann, G., Meyer zu Köcker, K.	Chancen und Grenzen von Laborparametern zur Kon- trolle des Gärprozesses in Biogasanlagen	Tagungsband des ersten C.A.R.M.E.N. For- schungs-Colloquiums "Nachwachsende Roh- stoffe" im SAZ / 04.–05.11.2010	Straubing
Dr. Mikolajewski, S. Kneipp, S.	Ringversuche 2010 zum Düngeberatungssystem Stickstoff (DSN)	LfL, AQU / 02.12.2010	Freising
Dr. Mikolajewski, S. Kneipp, S. Dr. Ellner, R.	Probennachkontrollen 2010: STD-Bodenuntersuchung	LfL, AQU / 02.12.2010	Freising

Name	Thema/Titel	Veranstalter/Datum	Ort
Dr. Mikolajewski S., Offenberger, K., Dr. Wendland, M., Dr. Ellner R.	Zur Qualität der Nmin- Methodik: Vorgaben zur Extraktion	LfL, AQU / 02.12.2010	Freising

4.2.3 Führungen

Gruppe	Anzahl Personen	Datum	Sachgebiet
Braugerstengemeinschaft	5	09.02.2010	AQU 4
Laborausstattungsfirma	2	18.02.2010	AQU 4
Getreideausschuss mit Müllerbund	15	01.04.2010	AQU 4
Biogas-Besprechung und Führung	5	01.04.2010	AQU 4
LWS Erding	30	16.04.2010	AQU 5
LWS Schweinfurt	7	20.04.2010	AQU 5
LKV – LOP und Fütterungstechniker	9	17.05.2020	AQU 5
Anwärter Pflanzenbau	5	21.05.2010	AQU 1, 2, 4
Getreide- u. Saatgutfirma mit Züchtern (Backlabor, Proteinanalytik)	14	26.05.2010	AQU 4
Studenten der HSFT (FH Freising),	20	31.05.2010	AQU 4
Studenten der TU-Lebensmitteltechnologie	12	02.06.2010	AQU 4
Studenten der Fachhochschule Weihenstephan	24	07.06.2010	AQU 4
Studenten der Fachhochschule Weihenste- phan Fachbereich Agraringenieurwesen	8	24.06.2010	AQU 4
TU und Berufsschule aus München EU-Austausch	15	16.07.2010	AQU 4
Milchprüfring Oberösterreich	3	29.07.2010	AQU 5
Hochschule Weihenstephan Triesdorf	25	26./27.07.2010	AQU 4
Universität Bayreuth, Institut für Biogeografie	3	18.10.2010	AQU 5
TU Freising; Lehrstuhl Pflanzenbau	3	12.11.2010	AQU 4
Institut für Pflanzenbau und Pflanzenzüchtung; SG Kartoffeln	3	22.11.2010	AQU 4
Besucher aus den USA (Vermälzung)	4	25.11.2010	AQU 4

4.3 Aus- und Fortbildung

Anzahl Personen	Zeitdauer	Personenkreis und Thema der Aus- und Fortbildungsmaßnahme	Betreuung durch
9	Daueraufgabe	Auszubildende zum Chemielaboranten	Nast Dr. Füglein
2	08.0316.04.2010 07.0616.07.2010	Auszubildende zum Biologielaboranten des Bundesamtes für Strahlenschutz	Dr. Schuster
5	29.0301.04.2010	"Schülerpraktikum" für die Ausbildungsberufe Chemie- und Biologielaborant	AQU 4
3	22.04.2010 26.0729.07.2010 02.1105.11.2010	"Schülerpraktikum" für die Ausbildungsberufe Chemie- und Biologielaborant	Dr. Schuster
7/1	28.0602.07.2010	Auszubildende/Schüler aus Ungarn im Rahmen des Europäischen Austausch- projektes "Leonardo da Vinci"; Ver- mittlung von Fach- und Schlüsselquali- fikationen als Anerkennung im "Euro- papass" für Auszubildende.	AQU AQU 2 AQU 4
2	07.0625.06.2010 28.0616.07.2010 19.0730.07.2010 14.0924.09.2010 27.0908.10.2010 11.1029.10.2010	Agrartechnische Assistenten	AQU 1 AQU 2 AQU 4 AQU 1 AQU 2 AQU 4

4.4 Dissertationen und Diplomarbeiten

Name	Thema/Titel Dissertation/Diplomarbeit	Betreuer, Kooperation
Gumplinger, L.	Diplomarbeit: Untersuchung der Aufmischeffekte von Weizenmehlen	Henkelmann, G., AQU 4 Kuss, C., FH Weihenstephan- Triesdorf, Fakultät Gartenbau und Lebensmitteltechnologie

Appel, M.	Diplomarbeit: Chancen und Grenzen der Online-Messtechnik zur Qualitäts- bestimmung pflanzlicher Rohstoffe	Henkelmann, G., AQU 4 Ebertseder, T., FH Weihenste- phan-Triesdorf, Fakultät Land- und Ernährungswirtschaft, LG Pflanzenbau
-----------	---	---

4.5 Mitgliedschaften

Name	Mitgliedschaften
Ellner, R.	Deutsche Landwirtschaftsgesellschaft (DLG)
	VDLUFA Direktorengremium
	Stiftungsbeirat der Deutschen Gesellschaft für Lebensmittelchemie (DFA)
	Arbeitsgruppe der LAGA zur Neufassung des Fachmoduls Abfall
	Kommission für Milchwirtschaft der DLG
	Vorsitzender der Prüfungsausschüsse für Molkereitechniker und für Agrartechnische Assistenten, Fachrichtung Milch und Lebensmittelanalytik
Henkelmann, G.	VDLUFA-Fachgruppe: Pflanzenernährung, Produktqualität und Ressourcenschutz und Fachgruppe: VIII Umwelt- und Spurenanalytik
	Gesellschaft Deutscher Chemiker (GDCh) Fachgruppen: Analytische Chemie, Umweltanalytik und Angewandte Spektroskopie
	Arbeitsgruppe "Pflanzenschutzmittel-Monitoring" am Landesamt für Wasserwirtschaft (LfU-München)
	Arbeitskreis: "Stabile Isotope" (ASI)
	Projektgruppe "Radioaktivität" beim Bayerischen Staatsministerium für Landesentwicklung und Umweltfragen"
	Arbeitskreis der Arbeitsgruppen "Intensivmonitoring, agrar fluxes, Umwelt- und Landschaftsbilanzen" der Internet – Fachschaft für Umweltbeobachtung – Umweltprognosen
	Arbeitsgruppe Biogas im Biogas Forum Bayern
Mikolajewski, S.	VDLUFA-Fachgruppe III: Düngemitteluntersuchung
	VDLUFA-Fachgruppe VIII: Umwelt- und Spurenanalytik
	Deutsche Botanische Gesellschaft (DBG)

Name	Mitgliedschaften
Nast, D.	Prüfungsausschuss der IHK München / Oberbayern für Chemie- und Biologielaboranten;
	Arbeitskreis KOBAS (Kooperation von Betrieb und Schule) für die Ausbildung von Chemielaboranten
	Wissenschaftlicher Beirat der Braugerstengemeinschaft für das Bundesgebiet
	European Grain Network zur Harmonisierung der Untersuchungsmethoden in Kooperation mit der International Association for Cereal Science and Technology (ICC)
	NIT-Analysenkomitee der Doemens-Lehranstalten für Braugetreide und im NIT-Analysenverbund der Doemens-Lehranstalten für Brau-, Futter- und Backgetreide
	NIRS-Analysenverbund des VDLUFA für Silomais bzw. Raps
Rieder, J.	Gesellschaft Deutscher Chemiker (GdCh)
Schuster, M.	VDLUFA-Fachgruppe: VI Futtermitteluntersuchung

Anhang 59

5 Anhang

Übersicht zu Probenart und –herkunft bearbeitet in AQU 1, 2, 4 und 5; Jahr 2010

T14		TAD				TD/Z				Inc				ITZ			
Untersuchungsa Probenmatrix	art	IAB	I	I	I	IPZ	ı	ı	Ī	IPS	ı	I	I	112	ı	I	1
Tioociiiiatiix			ģ	_			Daueraufga- ben				ģ				ģ		
İ		5.0	Daueraufga- ben	itte	=	50	antg	itte	=	50	Daueraufga- ben	itte	=	5.0	Daueraufga- ben	itte	=
1		Vollzug	ner:	it ff	Gesamt	Vollzug	nera	ittm	Gesamt	Vollzug	uer;	ittm	Gesamt	Vollzug	uer;	jek	Gesamt
İ		o _N	Da per	Drittmittel- projekt	ತಿ	N _o	Da	Drittmittel- projekt	ಕ	o ₂	Da	Drittmittel- projekt	ತ	o _N	Da per	Drittmittel- projekt	ತ
1. Anorgani	ischa									 						 	
Untersuch																	
Handelsdi			15		15	535			535								
Wirtschaf	ftsdünger		289	398	687		28		28								
Boden			3840		3840		683		683		90		90				
BDF Bode				928	928												
Sickerwäs			836		836		261		261								
	Gräser/Heilpflanzen bstrat/-gärreste		998		998		104		104								
	enerierung AbfKlärV																
	enerierung DüV																
2. Organisch																	
Untersuch																	
Boden																	
Heilpflanz	zen						174		174	105			105				
Saatgut						30	2111	50	30	170			025				
Getreide 3. Untersuch	shung don		63		63	27	2111	53	2191	173	652		825			<u> </u>	
Rohstoff	ang der Anglität																
Getreide/	Gräser/Inhaltsst.		5495	2308	7803		14380		14380		1658		1658				
	Backqualität)		884	2300	884		33695	701	4096		6		6				
Gerste (Br			456		456		2637		2637		60		60				
Silomais			35		35		2121		2121								
	bstrat/-gärreste		765		765		459		459		235		235				
4. Futtermit	ittel Untersuchungen																_
	er (frsich/angew.)														1		1 1
Silagen Mischratio	ionen														1		1
Kraftfutte															33		33
Nebenpro	odukte																
Körnerfrü																	
Ölfrüchte/	e/Schrote																
Sonstige															12		12
5. Untersuch																	
Exkreme Kot frisch			1	1	1												
Kot irisch Kot getr.			1	1	1												
Harn			1	1	1												
	chungen tierischer Produkte									İ						İ	
Rindfleisc	ch		1	1	1										287		287
Schweine			1	1	1										5337		5337
Lammflei	isch		1	1	1										115		115
Wisent			1	1	1												
Fisch Schweiner	nepaek		1	1	1												
	ahlen 2010	1	13676	3634	17310	592	26535	754	27699	278	2701	-	2979		5786	 	5786
rropenza	amen 2010	<u> </u>	13070	2024	1/310	374	20333	134	4/099	210	2701	l .	4919		3700		3/00

Fortsetzung Übersicht zu Probenart und –herkunft bearbeitet in AQU 1, 2, 4 und 5; Jahr 2010

Untersuchungsart	ITE				IFI				ILT							
Probenmatrix	112					1	I	l	12.1	1	I	I				LVFZ, AELE, KÜRV, LKP, Sonstige
		ė				Daueraufga- ben				d						E
		Daueraufga- ben	Drittmittel- projekt		b 0	ufg	Drittmittel- projekt		b 0	Daueraufga- ben	Drittmittel- projekt				ģ.,	۰ و ۱
	Vollzug	ara.	対	Gesamt	Vollzug	era .	と	Gesamt	Vollzug	era.	選芸	Gesamt	C.		Pflanzen- züchter	ifig ₹ Z
	19	ane	oje Oje	es	10	anc a	itt oje	es.	10	an can	ritt Oje	ess	LWG	IFZ	ich 📴	l ÿÿ Ki
	>	Ď Ž	D Id	5	>	D Z	D Id	9	>	D A	Q Id	9	i	E	五点	JXX
1. Anorganische	+															
Untersuchungen																
Handelsdünger										1		1				
Wirtschaftsdünger										1		1		5		18
Boden										8		8	438	243		265
BDF Boden										0		o	430	243		203
Sickerwässer																
Getreide/Gräser/Heilpflanzen														72		
Biogassubstrat/-gärreste											2581	2581		/2		
Probengenerierung AbfKlärV											2361	2301				574
Probengenerierung DüV																208
	-				-	 	-		-	 	-	-	-	-	-	208
							1					1	1			1
Untersuchungen							1					1	1			1
Boden Heilpflanzen																
Saatgut																422
Getreide																433
3. Untersuchung der																
Rohstoffqualität											0.44	0.54			44.50	
Getreide/Gräser/Inhaltsst.											961	961			1150	
Weizen (Backqualität)															424	80
Gerste (Brauwert)											2 4 7					188
Silomais											267	267				291
Biogassubstrat/-gärreste											646	646				136
4. Futtermittel Untersuchungen										_						
Grünfutter (frsich/angew.)		853	380	1233						3		3				382
Silagen		472	404	876						6		6				43
Mischrationen		1277	48	1325												3
Kraftfuttermittel		579	14	593			7	7								147
Nebenprodukte		52	4	56												
Körnerfrüchte		71	2	73												48
Ölfrüchte/Schrote		46	1	47												15
Sonstige		42	4	46												6
5. Untersuchung von							1					1	1			
Exkrementen				***			1					1	1			
Kot frisch	1	328		328												
Kot getr.	1	328		328												
Harn						ļ				ļ						
6. Untersuchungen tierischer Produkte	1															
Rindfleisch		54	54	143			1					1	1			1 1
Schweinefleisch							1					1	1			525
Lammfleisch							1					1	1			
Wisent	1															1
Fisch							90	90				1	1			1 1
Schweinespeck						ļ	1					1	1			58
Probenzahlen 2010		4102	951	5053			97	97		18	4455	4473	438	320	1574	3421

Übersicht zu Analysenparameter und Probenherkunft bearbeitet in AQU 1, 2, 4 und 5; Jahr 2010

	IAB				IPZ				IPS				ITZ			
		l				l	ĺ			ĺ	ĺ	l		l	1	1
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt
1. Anorganische Untersuchungen Handelsdünger Stickstoff Phosphat Kalium Magnesium Schwefel Spurenelemente Schwermetalle Wirtschaftsdünger pH-Wert Trockenmasse, org. Substanz Stickstoff Phosphat Kalium Calcium Magnesium Schwefel Natrium Schwefel Natrium Schwermetalle BDF-Boden 2005/2006 Spurenelemente Schwermetalle Boden Nmin (Ammonium-N, Nitrat-N)		12 262 303 606 585 300 300 226 233 208 1 350	398 796 796 342 342 321 321 321 375	12 262 701 1402 1381 642 642 547 554 529 1 525	1360 478 251 336 444 110 394	28 56 56 28 28 8 16 3 3		1360 478 251 336 444 110 394 28 56 56 28 28 28 16 3 3		180		180				
Spurenelemente Bor (CAT) Schwermetalle Sickerwässer Stickstoff (Nitrat) Phosphat Schwefel Gräser-/ Heilpflanzen Haupt- u. Spurenelemente Schwermetalle Biogassubstrat/-gärreste Hauptnährstoffe Spurenelemente Probengenerierung AbfKlärV Hauptnährstoffe Spurenelemente		60 836 836 836 4827		60 836 836 836 4827		261 261 261 416		261 261 261 416								
2. Organische Untersuchungen Boden Atrazin (HPLC) Atrazin (ELISA) Dünger Biuret Heilpflanzen Nitrat Saikosaponine Paeoniflorin					27	44		27 44 30	100 5			100 5				

	IAB				IPZ				IPS				ITZ			
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt
Astragalosid Saatgut Beizgrad Getreide DON / NIV (HPLC) DON (ELISA) Dünger ZON (HPLC) T-2 Toxin (ELISA) Neonicotionoide (HPLC) Neonicotionoide (DC) Fungerin		63		63		1640 471		100 1640 471	168 5	472 180		472 180 168 5				
3. Untersuchung pflanzlicher Rohstoffe Getreide/Gräser/Inhaltsstoffe Rohprotein NiRS Rohprotein NIT Rohfaser Rohasche Rohfett Trockenmasse Vortrocknung Calcium Kupfer Aluminium Eisen		2514 1278 1713 2308 1356 1125 1256 787 530 101		2514 1278 1713 2308 1356 1125 1256 787 530 101		2314 6505 1100 4469 1499 3282 5543 3504 227 160	1194 459 459 459 459 563 563	2314 7699 1100 4928 1958 3741 6106 3504 790 160		42 346		42 346				
Kalium Magnesium Mangan Molybdän Natrium Nickel Selen Bor		521 521 80 36 477 21		521 521 80 36 477 21		227 227 160 160 160 160	563 563	790 790 160 160 160 160								
Phophor Blei Zink Schwefel Chlor Kartoffeln Nitrat Backqualität		227 21 84 137		227 21 84 137		227 160 42 36 348	563 104 104	790 160 146 36 452								
Sedimentation Fallzahl Rapid-Mix-Test (RMT) Kleinbackversuch Kornhärte Mahldaten Mehlausbeute Asche (Korn) Asche (Mehl)		1112 1426 100 96 234 121 100		1112 1426 100 96 234 121 100		2382 3395 857 565 2501 857 778 284 441	1895 1654 1194 701 701	4277 5049 857 565 3695 1558 1479 284 441		134		134				
Stärke (Schrot) Farinogramm Extensogramm		912 124		912 124		3179 468 468	260 420	3179 728 888		42		42				

	IAB				IPZ				IPS				ITZ			
		1.				Ι.			_	l ,				l ,		
Untersuchungsart		Daueraufga- ben	Drittmittel- projekt	_		Daueraufga- ben	Drittmittel- projekt	_		Daueraufga- ben	Drittmittel- projekt			Daueraufga- ben	Drittmittel- projekt	_
Probenmatrix	Vollzug	era	ekt	Gesamt	Vollzug	era	ekt fm:	Gesamt	Vollzug	era	ekt fm:	Gesamt	Vollzug	era	ekt ekt	Gesamt
	Vol	Dau	Drit	es S	Vol	Dau	Drit	es.	Vol	Dau	Drit proj	es Ses	Vol	Dan	Drit	Ses.
Amylogramm Wasseraufnahme		80 124		80 124		78 688	260	78 948								
Feuchtkleber		213		213		889	701	1590								
Glutenindex		234		234		698	701	1399								
Wasseraufnahme		231		231		666	260	926								
Brauwert		201		-01		000	200	720								
Mälzungen		156		156		1370		1370		280		280				
Mälzungsanalysen		156		156		1370		1370		280		280				
Malzqualitätsindex		34		34		372		372		280		280				
Quellvermögen		34		34		372		372		280		280				
pH-Wert		34		34		372		372		280		280				
Friabilimeter		34		34		372		372		280		280				
Löslicher Stickstoff (Kjeldahl)		34		34		372		372		280		280				
Vorselektion		51		51		1239		1239								
Keimfähigkeit		34		34		372		372		280		280				
Keimenergie		51		51		1370		1370								
Diastatische Kraft						930		930								
Schwand		51		51		1370		1370								
Sortierung						970		970		372		372				
Tausendkorngewicht		845		845		1370		1370		252						
Hektolitergewicht		438		438		545		545		372		372				
Extrakt		34		34		372		372		280		280				
Malzhärte Brabender Trockenmasse (Malz)		34 34		34 34		372 372		372 372		280		280				
Bonitur		45		34 45		67		67								
NIRS-Silomais		43		43		07		07		42		42				
Trockenmasse		1719		1719		4707		4707		42		42				
Rohfett NIRS		359		359		2121		2121								
Stärke		517		517		2121		2121								
Enzymlösliche org. Substanz (ELOS)		912		912		2970		2970		42		42				
Rohfaser		512		512		2920		2920								
Rohprotein		2864		2864		3509		3509		210		210				
In vitro digestibility of organic matter		912		912		2970		2970		84		84				
In Vitro-Verdaulichkeit (IVDOM)																
Acid detergent fibre (ADF)		1824		1824		5940		5940		84		84				
Acid detergent lignin (ADL)		912		912		2970		2970		42		42				
Neutral detergent fibre (NDF)		1824		1824		5940		5940		84		84				
Organic acid detergent fibre (oADF)		517		517		2121		2121								
Organic neutral detergent fibre (oNDF)		517		517		2121		2121								
Zucker		912		912		2970		2970		42		42				
Biogasuntersuchungen						2440	4.50	*0=0								
Trockenmasse		530		530		2419	459	2878								
Rohasche Rohfett		998 517		998 517	l	2421 377	459	2421 836	1	I	I				I	
Leitfähigkeit		517		517		377	459	836 377	1	1	1				1	
Rohprotein		256		256		2796	459	3255		1					1	
Rohfaser		998		998		2798	459	3255		1					1	
Stärke		770		770		189	459	648		1					1	
Acid detergent fibre (ADF)		549		549		377	459	836		1					1	
Neutral detergent fibre (NDF)		549		549		377	459	836		1					1	
Acid detergent lignin (ADL)		549		549		164	459	623	1	1	1				1	
Zucker						164	459	623	1	1					1	

	IAB				IPZ				IPS				ITZ			
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt
Phosphor, Kalium, Calcium Ammoniumstickstoff (Vapodest) Stick-, Kohlenstoff, Schwefel (Dumas) Gesamt-Schwefel Gesamt-Kohlenstoff Organischer Stickstoff		1698 2523 376 376 376		1698 2523 376 376 376		164 297 2116 460 460 345	563 563 563 563	164 297 2679 1023 1023 908								
4. Futtermittel Untersuchungen Grünfutter (frsich/angew.) Trockenmasse Weender m. Fett (5 Parameter) Rohprotein Stärke Zucker ADF/NDF Nitrat Chlorid Natrium, Kalium, Magnesium, Calcium, Phophor (AAS)														2 2		2 2
Phosphor, Kalium (AAS) Mineralstoffe (12 Parameter) (RFA) Nährstoffparameter (NIR) Erweiterter Hohenheimer Futterwerttest (HFT)/Proteinqualität Aminosäuren														2		2
Kraftfuttermittel Trockenmasse Weender m. Fett (5 Parameter) Erweiterter Hohenheimer Futterwerttest														35		35
(HFT)/Proteinqualität Rohprotein Stärke Zucker Aminosäuren														35		35
Nährstoffparameter (NIR) Natrium, Kalium, Magnesium, Calcium, Phosphor (AAS)														12		12
Kupfer, Zink (AAS) Mineralstoffe (12 Parameter) (RFA) Säurebindungsvermögen pH-Wert														23		23
pH-Wert Silagen/Mischrationen Trockenmasse Weender m. Fett (5 Parameter) Protein Stärke (Polarimetrie) Zucker (Luff Schorf) NDF/ADF und oNDF/oADF Nährstoffparameter (NIR) Erweiterter Hohenheimer Futterwerttest (HFT)/Proteinqualität Zucker Anthron Alkohol Gärsäuren																

	IAB				IPZ				IPS				ITZ			
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt
pH-Wert Pufferkapazität Ammonium Stickstoff Nitrat Osmolalität DLG Nachprüfung Sichtprüfung Schimmel Natrium, Kalium, Magnesium, Calcium, Phosphor (AAS) Mineralstoffe (RFA) Dosen befüllen Nebenprodukte Trockenmasse Weender m. Fett (5 Parameter) Stärke Zucker Aminosäuren Natrium, Kalium, Magnesium, Calcium, Phosphor (AAS) Kupfer, Zink (AAS) Nährstoffparameter (NIR) Körnerfrüchte Trockenmasse Weender m. Fett (5 Parameter) Stärke Zucker Aminosäuren Natrium, Kalium, Magnesium, Calcium, Phosphor (AAS) Küpfer, Zink (AAS) Nährstoffparameter (NIR) Körnerfrüchte Trockenmasse Weender m. Fett (5 Parameter) Stärke Zucker Aminosäuren Natrium, Kalium, Magnesium, Calcium, Phosphor (AAS) Küpfer, Zink (AAS) Nährstoffparameter (NIR) Ölfrüchte/Schrote Trockenmasse Weender m. Fett Aminosäuren Stärke Zucker Gesamt Stickstoff Kupfer, Zink (AAS) Erweiterter Hohenheimer Futterwerttest (HFT)/Proteinqualität Natrium, Kalium, Magnesium, Calcium, Phosphor (AAS) NIR Sonstige Trockenmasse														12		12
Weender m. Fett (5 Parameter) Stärke Zucker Aminosäuren																
Natrium, Kalium, Magnesium, Calcium, Phosphor (AAS)														12		12
Kupfer, Zink (AAS)							l							12		12

	IAB				IPZ		_		IPS				ITZ			
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt
Mineralstoffe (12 Parameter) (RFA) pH-Wert Ammonium Stickstoff														12		12
5. Untersuchung von Exkrementen Trockenmasse Weender m. Fett (5 Parameter) Gesamt Stickstoff																
6. Untersuchungen tierischer Produkte Intram. Fett (Chemie) Fettsäuren (45 FS/Analysengang) Protein Wasser														620 98		620 98
Asche Tropfsaftverlust (Schutzgas) NIR-Unters. Muskel pH-Wert Scherkraft Lagerverlust Grillverlust Fleischfarbe														2458 5327 40 40 40		2458 5327 40 40 40
Aminosäuren Analysenzahlen 2010		65475	3812	69287	3400	128410	20724	152534	278	5850		6128		8782		8782

Fortsetzung Übersicht zu Analysenparameter und Probenherkunft bearbeitet in AQU 1, 2, 4 und 5; Jahr 2010

Fortsetzung Obersicht zu A	ITE	parame	ter una	TTODEII	IFI	t bear b		1QC 1,	LILT	i S, Gain	2010					I
	IIE	Ì	1	1	IFI	ĺ	Î.	Ī	ILI	1	Ì	Ī			÷	H, H,
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	LWG	TFZ	Pflanzenzüch- ter	LVFZ, AELF, LÜRV, LKP, Sonstige
1. Anorganische Untersuchungen Handelsdünger Stickstoff Phosphat Kalium Magnesium Schwefel Spurenelemente Schwermetalle Wirtschaftsdünger pH-Wert Trockenmasse, org. Substanz Stickstoff Phosphat Kalium Calcium Magnesium Schwefel Natrium Schwefel Natrium Schwermetalle BDF-Boden 2005/2006 Spurenelemente														5 10 10 5 5		18 36 36 11 11
Schwermetalle Boden Nmin (Ammonium-N, Nitrat-N) Spurenelemente Bor (CAT) Schwermetalle Sickerwässer Stickstoff (Nitrat) Phosphat Schwefel Gräser - Heilpflanzen Haupt- u. Spurenelemente Schwermetalle										16		16	41 397 50	486		470 30
Biogassubstrat/-gärreste Hauptnährstoffe Spurenelemente Probengenerierung AbfKlärV Hauptnährstoffe Spurenelemente											8988 1661	8988 1661		216		630 600
2. Organische Untersuchungen Boden Atrazin (HPLC) Atrazin (ELISA) Dünger Biuret Heilpflanzen Nitrat Saikosaponine Paeoniflorin																

	ITE				IFI				ILT							
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	LWG	TFZ	Pflanzenzüch- ter	LVFZ, AELF, LÜRV, LKP, Sonstige
Astragalosid Saatgut Beizgrad Getreide DON / NIV (HPLC) DON (ELISA) Dünger ZON (HPLC) T-2 Toxin (ELISA) Neonicotionoide (HPLC) Neonicotionoide (DC) Fungerin																657 1 98
3. Untersuchung pflanzlicher Rohstoffe Getreide/Gräser/Inhaltsstoffe Rohprotein Kjeldahl Rohprotein NIRS											620 620	620 620		216 40	30 430	44
Rohprotein NIT Rohfaser Rohaser Rohasche Rohfett Trockenmasse Vortrocknung Calcium Kupfer Aluminium Eisen Kalium Magnesium Mangan Molybdän Natrium Nickel Selen Bor Phophor Blei Zink Schwefel Chlor											616 620 620 620 620 150 125 125 125 394 125 125 125 125 399 504	616 620 620 620 620 150 125 125 125 394 125 125 125 125 399		40 40 40 40 40	30 30 30 30	300 300 361 357
Backqualität Sedimentation Fallzahl Rapid-Mix-Test Kleinbackversuch Kornhärte Mahldaten Mehlausbeute Asche (Korn) Asche (Mehl)															775 775 316 316 316 316 316	372
Stärke (Schrot) Farinogramm Extensogramm																300

	ITE				IFI				ILT							
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	LWG	TFZ	Pflanzenzüch- ter	LVFZ, AELF, LÜRV, LKP, Sonstige
Amylogramm Wasseraufnahme Feuchtkleber Glutenindex Wasseraufnahme Brauwert Mälzungen Mälzungsanalysen Malzungsanalysen Quellvermögen pH-Wert Friabilimeter															2 2	560
Löslicher Stickstoff (Kjeldahl) Vorselektion Keimfähigkeit Keimenergie Diastatische Kraft Schwand Sortierung Tausendkorngewicht Hektolitergewicht Extrakt Malzhärte Brabender Trockenmasse (Malz) Bonitur																560 56
NIRS-Silomais Trockenmasse Rohfett NIRS Stärke Enzymlösliche org. Substanz (ELOS) Rohfaser Rohprotein In vitro digestibility of organic matter											156 156 156 156 156 156 156	156 156 156 156 156 156 156		41 41 41 41 41 89 41	72	464 300 300 300
In Vitro-Verdaulichkeit (IVDOM) Acid detergent fibre (ADF) Acid detergent lignin (ADL) Neutral detergent fibre (NDF) Organic acid detergent fibre (oADF) Organic neutral detergent fibre (oNDF) Zucker											282 282 282 156 156	282 282 282 156 156 156		41 41 41 41 41 41		600 300 600
Biogasuntersuchungen Trockenmasse Rohasche Rohfett Leitfähigkeit Rohprotein Rohfaser Stärke Acid detergent fibre (ADF) Neutral detergent fibre (NDF) Acid detergent lignin (ADL) Zucker											959 959 959 959 233 233 959 959 959 959	959 959 959 959 959 233 233 959 959 959 959		40 40 40 40 40 40 40	30 30 30 30 30 30 30 30 30 30 30 30 30	4 4 4 4

	ITE				IFI				ILT							
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	LWG	TFZ	Pflanzenzüch- ter	LVFZ, AELF, LÜRV, LKP, Sonstige
Phosphor, Kalium, Calcium Ammoniumstickstoff (Vapodest) Stick-, Kohlenstoff, Schwefel (Dumas) Gesamt-Schwefel Gesamt-Kohlenstoff Organischer Stickstoff											959 959 848 144 848 840	959 959 848 144 848 840		40 40 40 40 40 40	30 30 30 30 30 30 30	22 24
4. Futtermittel Untersuchungen Grünfutter (frsich/angew.) Trockenmasse Weender m. Fett (5 Parameter) Rohprotein Stärke Zucker ADF/NDF Nitrat Chlorid Natrium, Kalium, Magnesium, Calcium, Phophor (AAS)		382 195 67 13 11 8 169 115 23	320 3 163	702 198 230 13 11 8 242 115 23												292 5
Phosphor, Kalium (AAS) Mineralstoffe (12 Parameter) (RFA) Nährstoffparameter (NIR) Erweiterter Hohenheimer Futterwerttest (HFT)/Proteinqualität		16 124 6	163 318 317	163 334 441 6												100 223
Aminosäuren Kraftfuttermittel Trockenmasse Weender m. Fett (5 Parameter) Erweiterter Hohenheimer Futterwerttest (HFT)/Proteinqualität		5 522 432 14	14 6	5 536 438 14			7	7								2 2
Rohprotein Stärke Zucker Aminosäuren Nährstoffparameter (NIR) Natrium, Kalium, Magnesium, Calcium,		12 225 223 215 25 200		12 225 223 215 25 200												3
Phosphor (AAS) Kupfer, Zink (AAS) Mineralstoffe (12 Parameter) (RFA) Säurebindungsvermögen pH-Wert Silagen/Mischrationen		161 5 67 59		161 19 67 59												
Trockenmasse Weender m. Fett (5 Parameter) Protein		591 437	962 23	1553 460												8
Stärke (Polarimetrie) Zucker (Luff Schorf) NDF/ADF und oNDF/oADF Nährstoffparameter (NIR) Erweiterter Hohenheimer Futterwerttest		102 90 50 475 63	421	102 90 50 896 63												88
(HFT)/Proteinqualität Zucker Anthron Alkohol Gärsäuren		95 89 104	41 39	95 130 143												3

	ITE				IFI				ILT							_
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	LWG	TFZ	Pflanzenzüch- ter	LVFZ, AELF, LÜRV, LKP, Sonstige
pH-Wert		140		140												
Pufferkapazität		11	67	78												
Ammonium Stickstoff		104	41	145												
Nitrat		8		8												
Osmolalität		6		6												
DLG Nachprüfung		42		42												
Sichtprüfung Schimmel		141		141												
Natrium, Kalium, Magnesium, Calcium,		11		11												
Phosphor (AAS)																
Mineralstoffe (RFA)		211	311	522												26
Dosen befüllen		17		17												
Nebenprodukte																
Trockenmasse		52	4	56												
Weender m. Fett (5 Parameter)		49	4	53												
Stärke		42	-	42												
Zucker		43		43												
Aminosäuren		41		41												
Natrium, Kalium, Magnesium, Calcium,		40		40												
Phosphor (AAS)		40		40												
Kupfer, Zink (AAS)		40		40												
Nährstoffparameter (NIR)		40	4	4												
Körnerfrüchte			+	+												
Trockenmasse		71	2	73												11
Weender m. Fett (5 Parameter)		61	2	63												2
Stärke		52	2	52												2
		52		52												
Zucker Aminosäuren		52 52		52 52												3
Natrium, Kalium, Magnesium, Calcium,		52 52	2	54 54												3
		32	2	54												
Phosphor (AAS)		34	2	26												
Kupfer, Zink (AAS)		34 11	2	36												
Nährstoffparameter (NIR) Ölfrüchte/Schrote		11		11												9
		63														
Trockenmasse			1	64												
Weender m. Fett		63	1	64												
Aminosäuren		28	1	28	1						1		1			
Stärke Zucker	İ	31 31	1	31 31	İ		1	I		Ì	İ	Ì	İ			
Zucker Gesamt Stickstoff		2	1	2			1									
		26	1	26	1						1		1			
Kupfer, Zink (AAS) Erweiterter Hohenheimer Futterwerttest		8	1		1						1		1			
		•	1	8	1						1		1			
(HFT)/Proteinqualität		26		27												
Natrium, Kalium, Magnesium, Calcium,		26	1	21	1						1		1			
Phosphor (AAS)																
NIR		1		1												
Sonstige		67	1 4	7.	1						1		1			22
Trockenmasse		67	4	71	1						1		1			22 13
Weender m. Fett (5 Parameter)		51	4	55	1						1		1			13
Stärke		42	4	46	1						1		1			
Zucker		43	4	47	1						1		1			[
Aminosäuren		56	1 .	56	1						1		1			3
Natrium, Kalium, Magnesium, Calcium,		43	2	45			1									2
Phosphor (AAS)		42		l			1									
Kupfer, Zink (AAS)		42	2	44												13

	ITE				IFI				ILT							
Untersuchungsart Probenmatrix	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	Vollzug	Daueraufga- ben	Drittmittel- projekt	Gesamt	LWG	TFZ	Pflanzenzüch- ter	LVFZ, AELF, LÜRV, LKP, Sonstige
Mineralstoffe (12 Parameter) (RFA) pH-Wert Ammonium Stickstoff		12 3 3	2	14 3 3												13 7
5. Untersuchung von																
Exkrementen																
Trockenmasse		328		328												
Weender m. Fett (5 Parameter)		328		328												
Gesamt Stickstoff		328		328												
6. Untersuchungen tierischer Produkte			***													
Intram. Fett (Chemie)		21	280	301												90
Fettsäuren (45 FS/Analysengang)		54	200	54												116
Protein			280	280												
Wasser Asche			280 280	280 280												
Tropfsaftverlust (Schutzgas)			280	280												
NIR-Unters. Muskel																498
pH-Wert		54		54												470
Scherkraft		54		54												
Lagerverlust		54		54												
Grillverlust		54		54												
Fleischfarbe		54		54												
Aminosäuren		-]			90	90								48
Analysenzahlen 2010		8743	4461	13204			104	104		16	31948	31964	488	2238	3980	10370