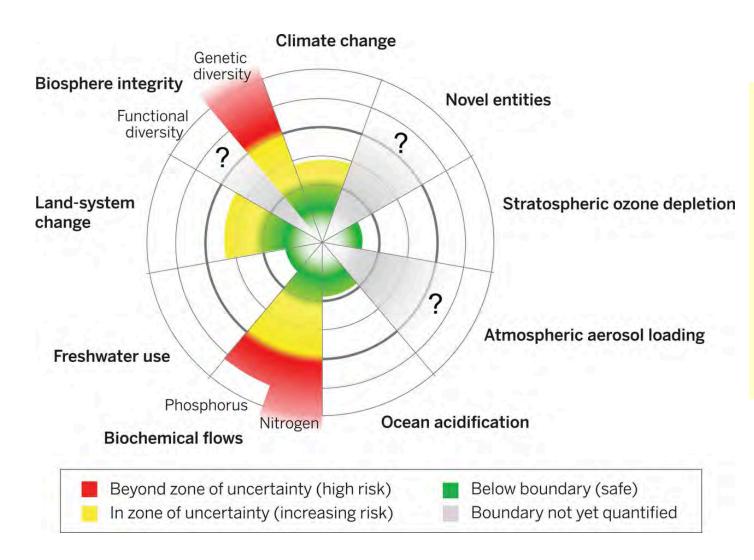


Wie muss Nutztierhaltung als essentieller Bestandteil nachhaltiger Landwirtschaft gestaltet werden?

Urs Niggli


Inhalt

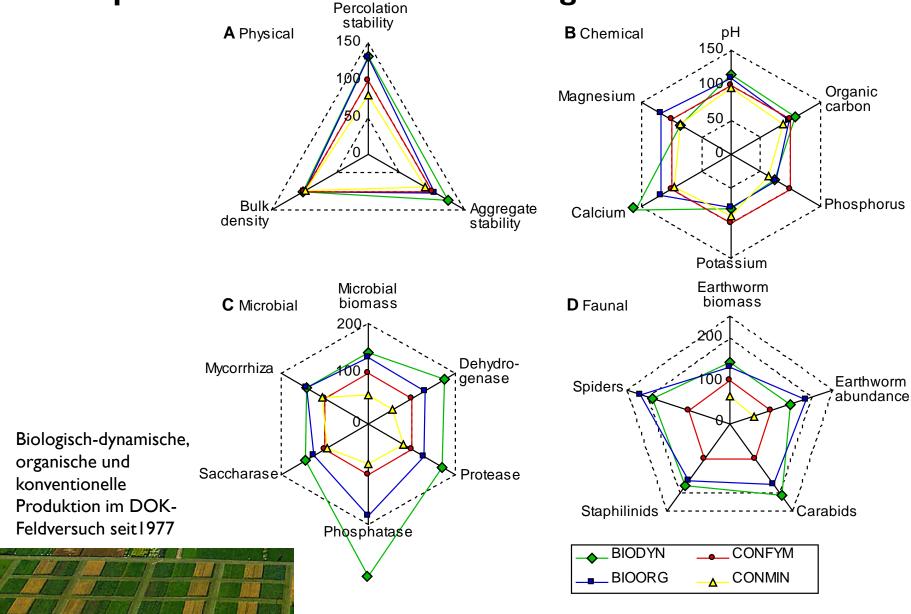
- Die Nachhaltigkeitsdefizite der Landwirtschaft.
- Kann die Welt auf nachhaltige oder ökologische Weise ernährt werden?
- Die Bedeutung der Tierhaltung für die nachhaltige Landnutzung und Ernährung.
- Das ethische Dilemma.
- Wege zur nachhaltigen Land- und Ernährungswirtschaft.

www.fibl.org

Landwirtschaft und Ernährung ist nicht nachhaltig

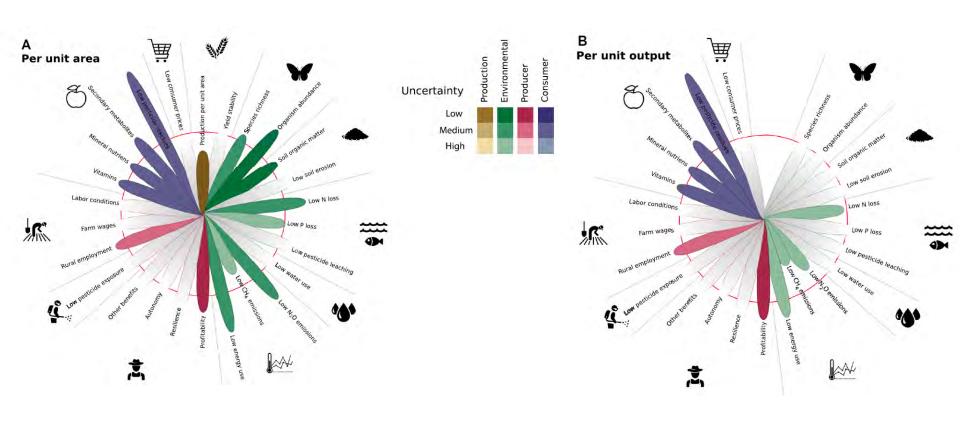
Belastung des
Planeten bei
Stickstoff,
Phosphor,
Biodiversitätsverlust und
Landnutzungsänderung im
Bereich "hohes
Risiko".

Steffen et al.: Planetary boundaries: Guiding human development on a changing planet. In: <u>Science</u>. Band 347, Nr. 6223, 2015, <u>doi:10.1126/science.1259855</u>

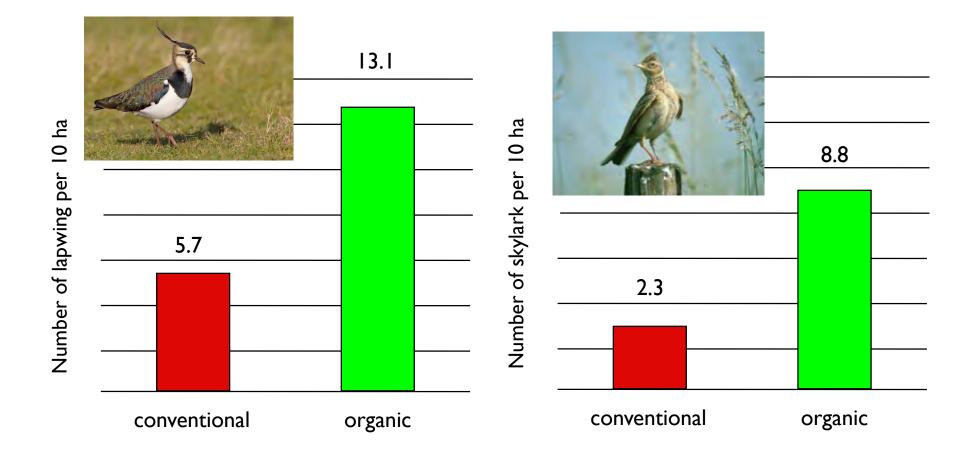

Forschungsfragen

- Wie beeinflusst ein Szenario "Keine Futtermittel von Ackerland" die Landnutzung, die Ernährung und die Umweltindikatoren?
- Kann der Ökolandbau, der zusätzliche Ökologisierungseffekte hat, die Welt im Jahr 2050 mit 9 bis 10 Milliarden Menschen ernähren?
- Wieviel Land würde das gebrauchen?
- Welche Umwelteffekte würde das haben?
- Können die <u>Reduktion von Food Waste</u> und <u>Anderungen in den Ernährungsgewohnheiten</u> eine Umstellung auf <u>Ökolandbau</u> unterstützen?

- Schader, C., Muller, A., El-Hage Scialabba, N., Hecht, J., Isensee, A., Erb, K.-H., Smith, P., Makkar, H.P.S., Klocke, K., Leiber, F., Schwegler, P., Stolze, M. and Niggli, U., 2015, Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability, Journal of the Royal Society Interface 12: 20150891
- Muller, A., Schader, C., El-Hage Scialabba, N., Hecht, J., Isensee, A., Erb, K.-H., Smith, P., Klocke, K., Leiber, F., Stolze, M. and Niggli, U., 2017, Strategies for feeding the world more sustainably with organic agriculture, Nature
 Communications October/2017.

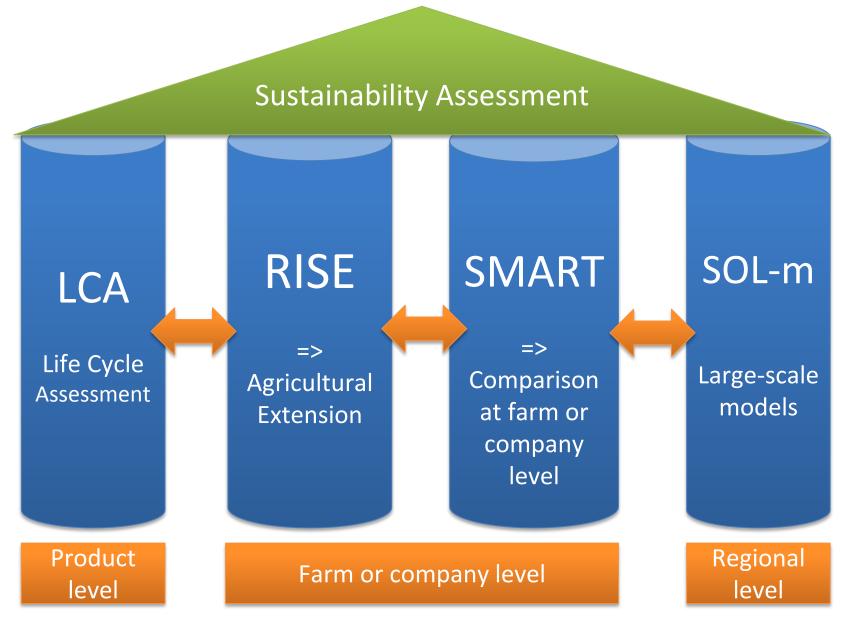


Bodenqualität im Ökolandbau im Vergleich


Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U. (2002): Soil fertility and biodiversity in organic farming. Science 296, 1694-1697

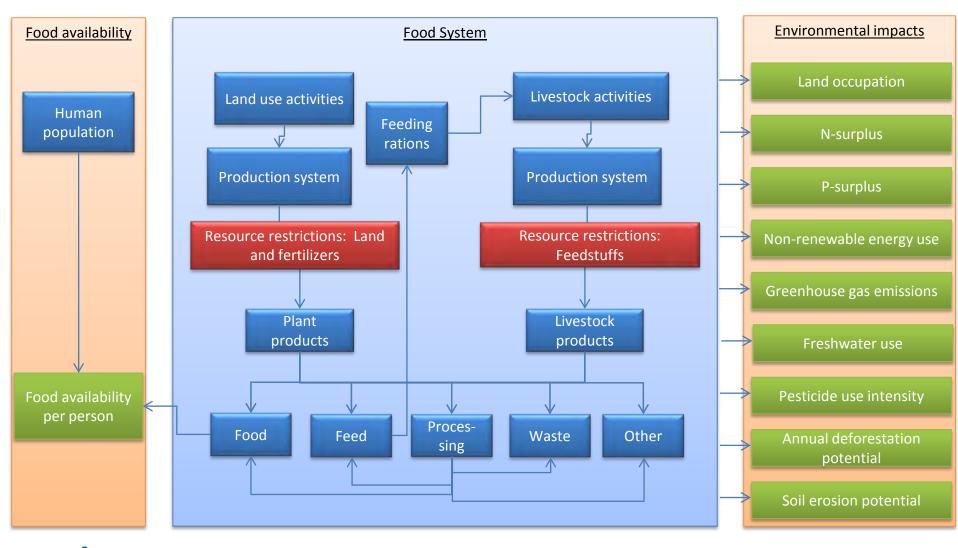
Absolute versus relative Leistungsfähigkeit des Biolandbaus – im Vergleich zu konventionell

Effekte des Anbausystems auf die Vogelpopulationen (Kiebitz, Feldlerche). Beispiel für Bedeutung der Flächenbetrachtung


N₂O Emissionen: Beispiel für Bedeutung der relative Vorzüglichkeit per Ertrag

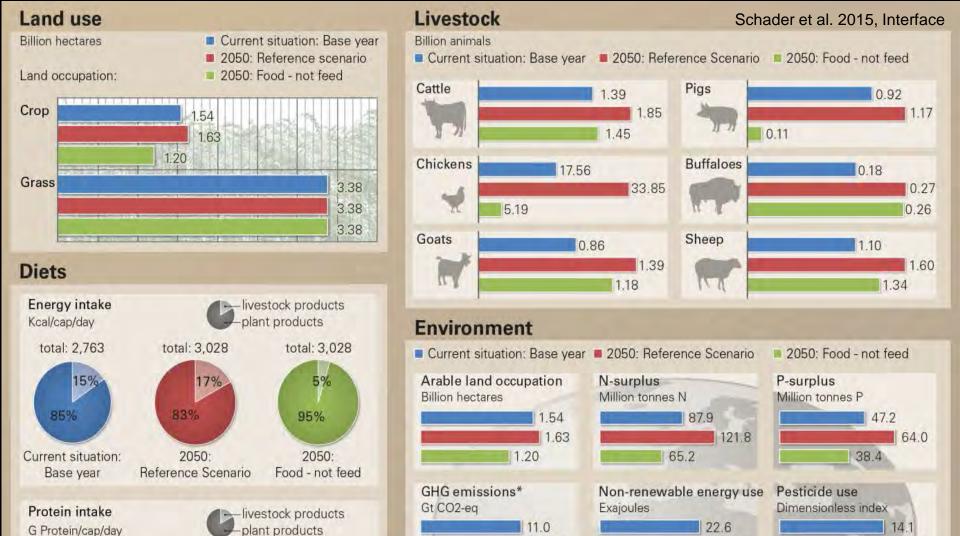
	N ₂ O emiss	sions per ac	reage (k	g N ₂ O-N ha	GWP ^d N ₂ O emissions per acreage (kg CO ₂ -eq. ha ⁻¹ a ⁻¹)							
land-use	MD*	CIb	р	studies	comp. °	MD*	CIb	р	studies	comp. °		
all (annual)	-1.04	0.41	0.00	12	70	-486	191	0.00	12	70		
arable	-1.01	0.42	0.00	11	67	-472	195	0.00	11	67		
grassland	-2.42	5.16	0.36	2	3	-1133	2416	0.36	2	3		
rice-paddies	-1.39	2.22	0.22	1	3	-650	1038	0.22	1	3		
overall ^g	-1.03	0.32	0.00	18	98	-482	150	0.00	18	98		

Mittlere Differenz für alle Studien $0.5 \text{ t ha}^{-1} \text{ yr}^{-1} \text{ weniger CO}_2 \text{ eq.}$ als Stickoxide.


Ab - 17 % Ertragsdifferenz wird Öko schlechter

Überblick über das SOL-Modell

www.fibl.org


Environmental impacts covered in SOL-m

Environmental impact	Indicator
Land occupation	Land occupation in terms of arable, permanent
	crops and grassland
Soil erosion potential	Crop-specific factor covering the erosion
	susceptibility of crops
Use of fossil energy	Cumulative energy use (CED) 1.05-1.08
resources	
Greenhouse gases	GWP IPCC100a
Nitrogen surplus	Nitrogen surplus and losses
Phosphorus surplus	P ₂ O ₅ surplus
Pesticide use	Pesticide intensity of crops, legislation in the
	countries and access of farmers to pesticides
Annual deforestation	Additionally required crop land
potential	
Grassland exploitation	Ratio between ruminants fed on grassland and
	ruminants that could be fed on grassland in a
	country

www.fibl.org Schader et al. 2015

П

total: 77

66%

Current situation:

Base year

34%

total: 82

2050:

Reference Scenario

62%

38%

total: 78

89%

2050:

Food - not feed

12.8

2.178

10.4

1,371

1,718

Freshwater use

 km^3

8.2

7.2

6.5

26.7

17.2

Deforestation

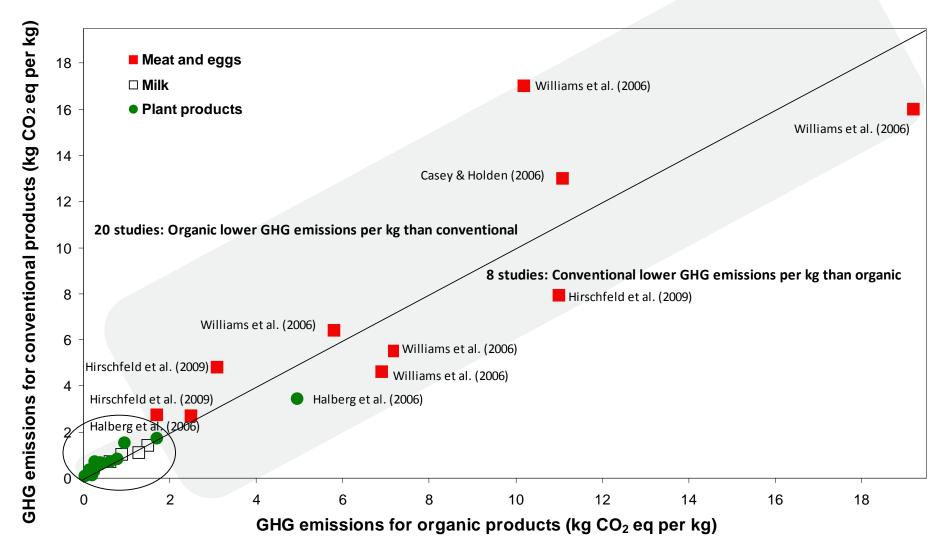
Million ha

15.4

36.8

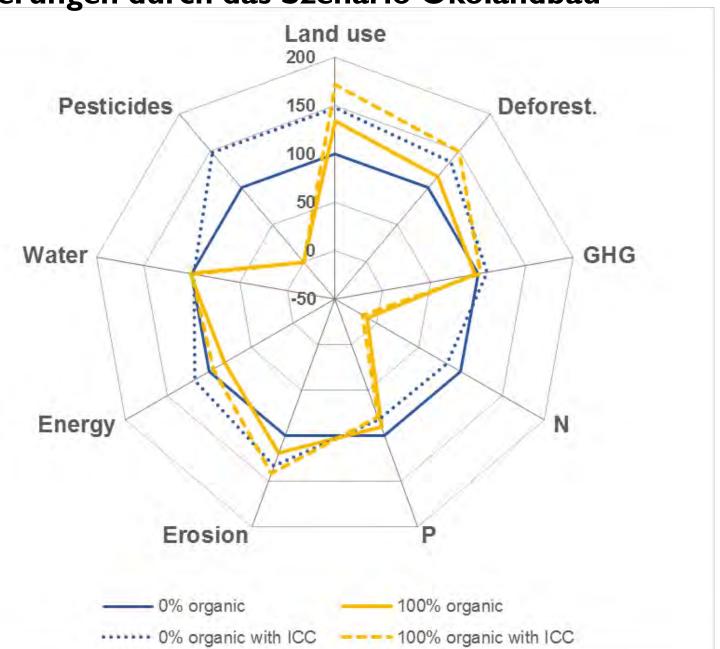
12.0

Soil erosion from water


32.2

33.7

Billion tonnes soil lost


^{*} GHG emissions include emissions from input provision, deforestation and organic soils.

GHG-Emissionen organic vs. conventional products

Veränderungen durch das Szenario Ökolandbau

0

25

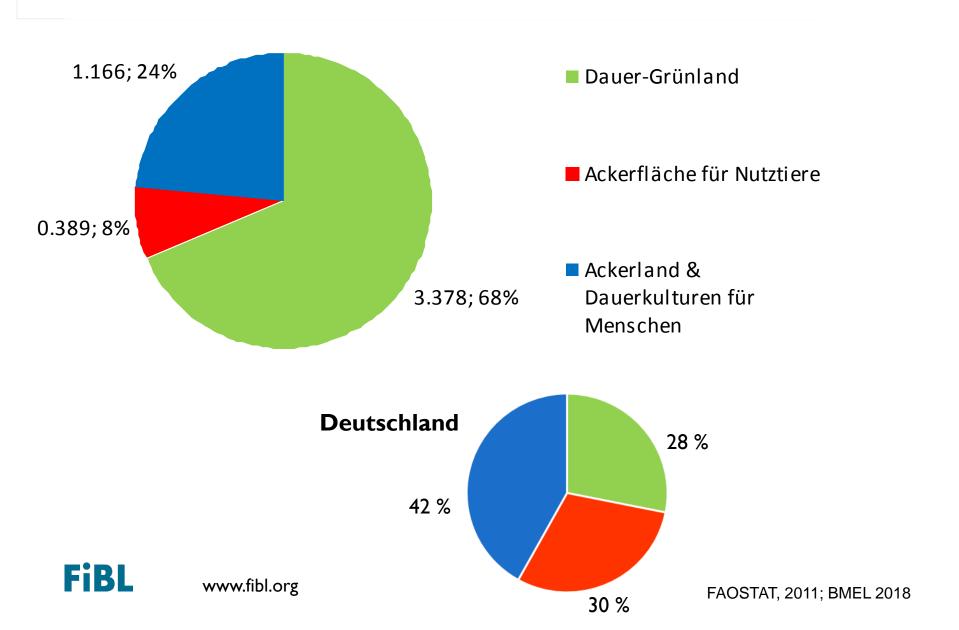
50

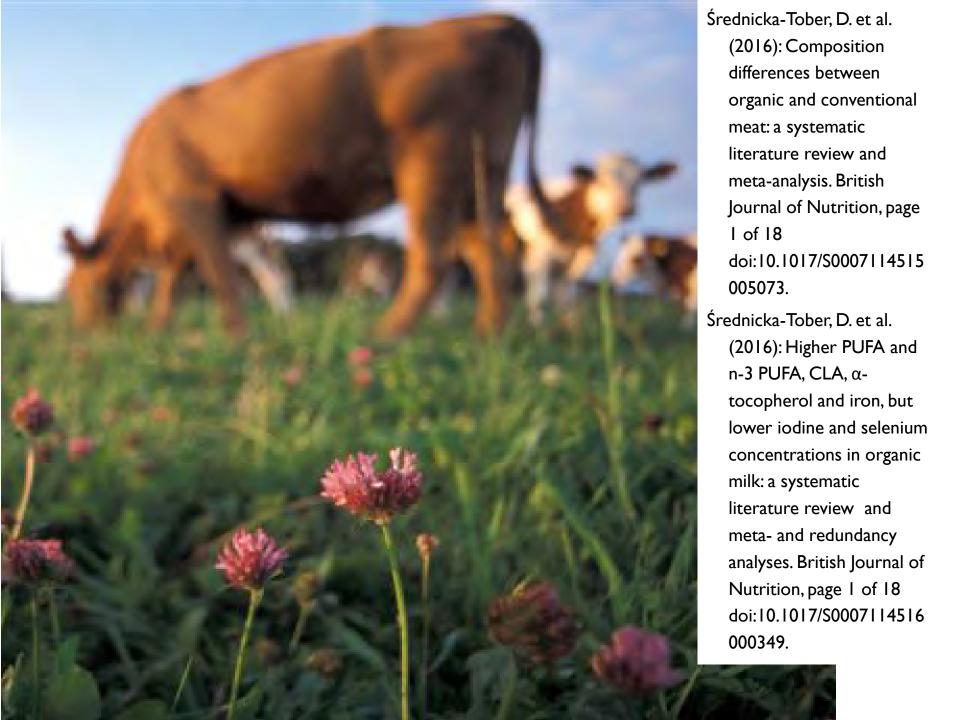
% reduction in food-competing fe			zero			·p	uct 011	high										
% reduction in food-competin	% organic						% organic					% organic						
% re food	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
0	O.	5	10	17	25	33	21	26	33	40	47	57	46	50	54	58	64	71
50	-16	-12	-8	-4	2	8	2	7	10	16	22	27	25	26	29	32	35	40
100	-26	-24	-20	-16	-12	-8	-9	-6	-3	1	5	9	12	13	14	15	17	20
0	-6	-1	5	10	18	26	14	20	25	32	40	48	39	42	45	50	56	61
50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	18	20	22	25	27	32
100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4	6	7	8	8	10	13
0	-11	-7	-1	5	11	20	8	13	18	25	32	40	30	34	38	42	47	53
50	-25	-23	-19	-14	-9	-4	-9	-6	-2	3	8	14	10	12	15	17	21	25
100	-35	-32	-29	-25	-22	-18	-19	-17	-13	-10	-7	-3	-1	0	1	3	4	7

Muller et al. 2017, Nature Communications

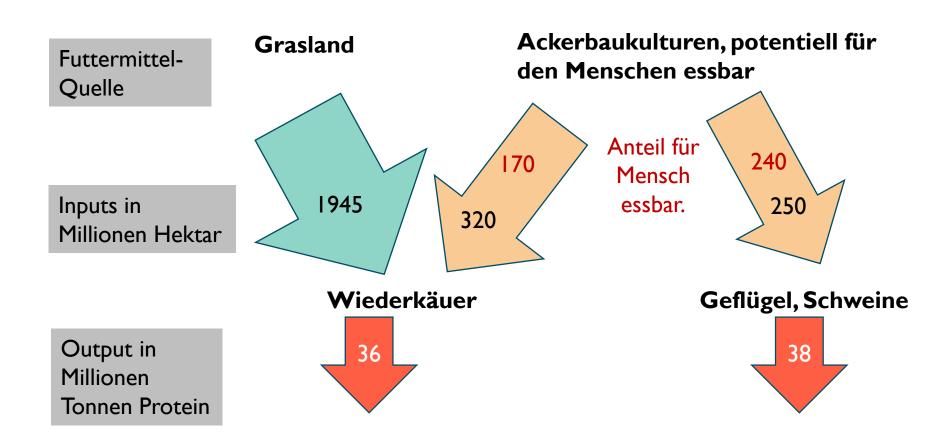
Die Bedeutung der Tierhaltung für die nachhaltige Landnutzung und Ernährung.

Artenvielfalt in Lebensräumen


	Wald	Wiesen	Äcker	Siedlung	Alp- weiden	Gebirge
Gefässpflanzen	21 ±1	35 ±1	15 ±1	19 ±3	42 ±3	21 ±
Moose	15 ±1	6 ±1	1 ±0	5 ±1	19 ±2	13 ±1
Schnecken	9 ±1	6 ±0	3 ±1	6 ±1	3 ±1	3 ±1


¹ Mittlere Artenzahl auf Flächen von zehn Quadratmetern. «Gebirge» bedeutet Flächen ohne alpwirtschaftliche Nutzung wie Schuttfluren, Rasen oder Zwergstrauchheiden. Nicht untersucht wurden Gletscher und unzugängliche Felsen.

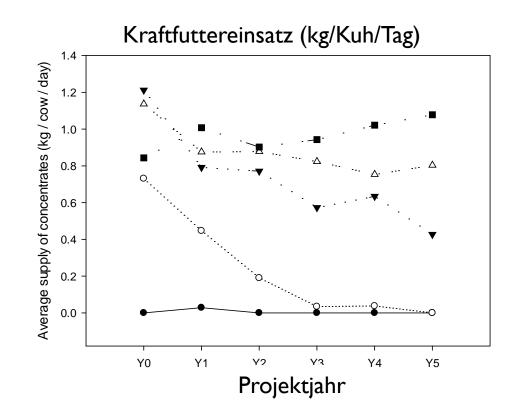
Quelle: BDM



Agrarfläche (Welt, in Milliarden Hektaren)

Globaler Verbrauch von Futtermittel und Produktion von Eiweiss

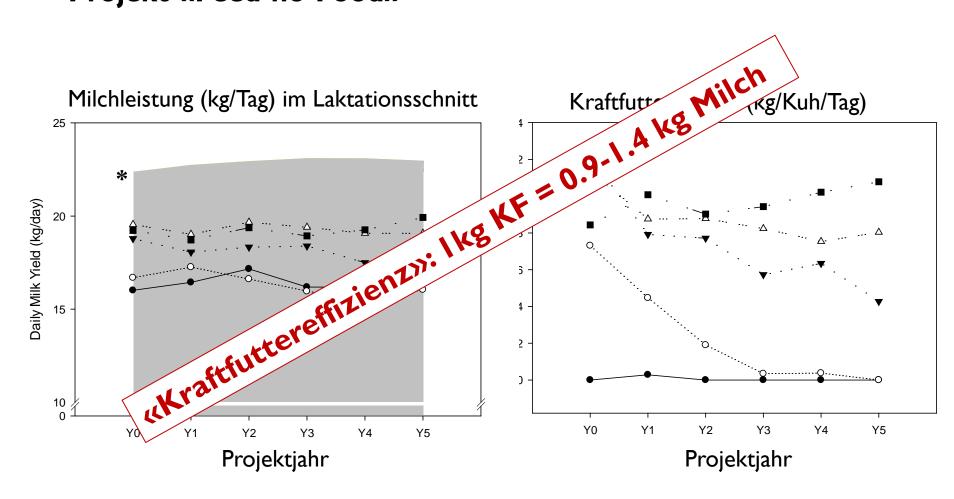
Projekt «Feed-no-Food»


Biologische Praxisbetriebe, Projektdauer 2008 bis 2014

69 Betriebe, davon 42 während der ganzen Versuchsdauer

5 Versuchsgruppen:

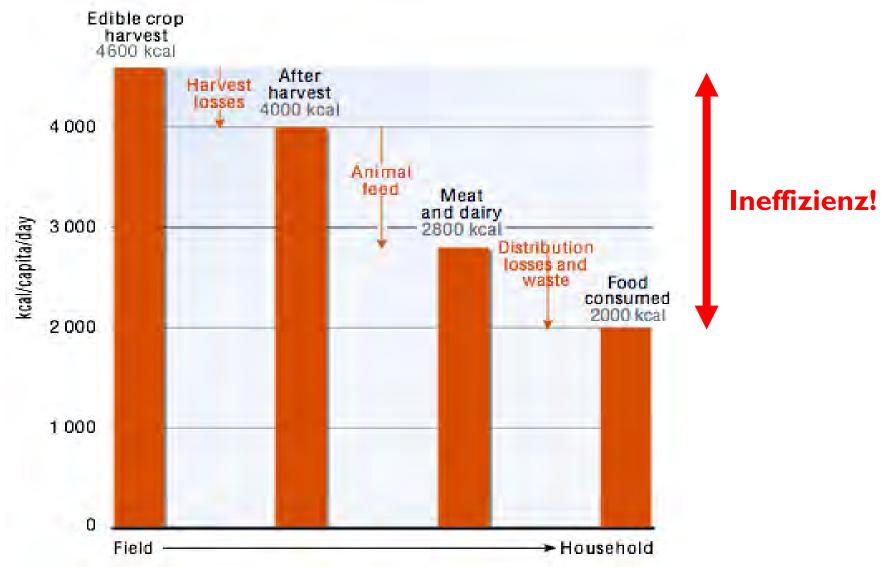
- Konstante Kraftfuttergabe (*)
- △ Reduktion um weniger als 50 %
- ▼ Reduktion um mehr als 50 %
- Reduktion auf Null
- Kein Kraftfutter von Anfang an



Notz et al. (2016)

Projekt «Feed-no-Food»

^{*} Durchschnitt aller Herdebuchtiere in der Schweiz.


Elemente nachhaltiger Rindviehhaltung

- Beste Futterbau-Praxis.
- Reduktion von Kraftfutter.
- Vielfältiges Futterangebot, Möglichkeiten zur Selektion, z.B. spezifische pflanzliche Sekundärmetaboliten.
- Zucht auf Lebensleistung und auf Raufutterverwertung.
- Tiefe Remontierungsraten.
- Gesunde Tiere.
- Kosten und Gewinne im Auge behalten.
- Effiziente, robuste und resistente Tiere züchten.

Eisler, M.C., Lee, M., Tarlton, J.F., Martin, G.B., Beddington, J., Dungait, J., Greathead, H., Liu, J., Mathew, S., Miller, H. (2014): Agriculture: Steps to sustainable livestock. Nature 507, 32.

Wie setzt sich die Verschwendung von Lebensmittel zusammen?

30 bis 50 % der Lebensmittel für den Abfall, Verluste auf Feld und in Lagern, für Fleisch, Milch und für Agro-Diesel?

Kosten der verlorenen

Produktion I.0 Billionen US\$

Umweltkosten 0.7 Billionen US\$

Soziale Kosten 0.9 Billionen US\$

Total: 1.6 Billionen US\$ pro Jahr

3-4 % des globalen Bruttosozialprodukts

Klimagas-Emissionen von Hermetia illuscens Larven

	per kg larvae	& day (mean)	per kg biomas	s gain (mean)
	Feed A	Feed B	Feed A	Feed B
CO ₂ (g)	205	161	2144	1646
CH ₄ (g)	5	3	49	26
N ₂ O (mg)	3	4	33	45
tot. g CO ₂ eq.	211	169	3379	2309

- Versuche in Respirationskammern (15 Tage).
- Über 4 Larvenstadien.
- 2 Futterregime (rohfaserreich vs. protein- und energieangereichert)

Das ethische Dilemma

Ethischer Aspekt: 30 Milliarden Mitgeschöpfe werden jährlich zur Nahrungsaufnahme getötet.

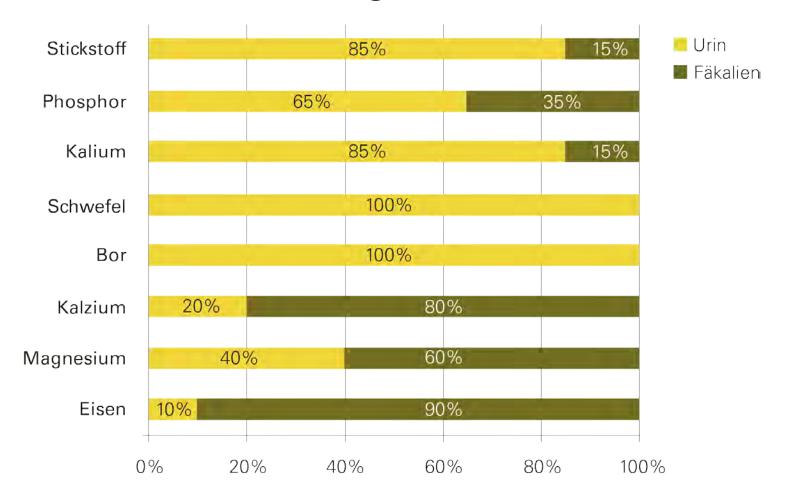
Der Entwicklungspsychologe Thomas Suddendorf von der Universität in Brisbane untersuchte die Entwicklung von kognitiven Fähigkeiten bei Menschen- und Affenkindern.

Der Mensch unterscheidet sich durch die Fähigkeit zu mentalen Zeitreisen. Er denkt ständig in Szenarien, was seine Zukunft (aber auch die Vergangenheit) anbelangt.

Und er hat die Fähigkeit, die Sprache konzeptuell zu nutzen. So kann er dank dieser Fähigkeit ganz neue Informationen vermitteln, was eine Voraussetzung für die raschen Fortschritte in der Wissenschaft und Technologie ist.

The Gap: The Science of What Separates Us From Other Animals by Thomas Suddendorf, 2013

Ressourcen-Effizienz (DOK-Versuch/CH, 28 Jahre*)


	Parameter	Einheit	Öko	Integrierte Produktion mit Vieh	Öko in % von IP
	Nährstoff-Inputs	kg N _{total} ha ⁻¹ yr ⁻¹	101	157	64 %
		kg N _{min} ha ⁻¹ yr ⁻¹	34	112	30 %
·/		kg P ha ⁻¹ yr ⁻¹	25	40	62 %
		kg K ha ⁻¹ yr ⁻¹	162	254	64 %
	Applizierte Pestizide	kg ha ⁻¹ yr ⁻¹	1.5	42	4 %
	Erdölverbrauch	L ha ⁻¹ yr ⁻¹	808	924	87 %
	Gesamterträge von 28 Jahren	%	83	100	83 %
	Bodenbiomasse als "output"	tons ha ⁻¹	40	24	167 %

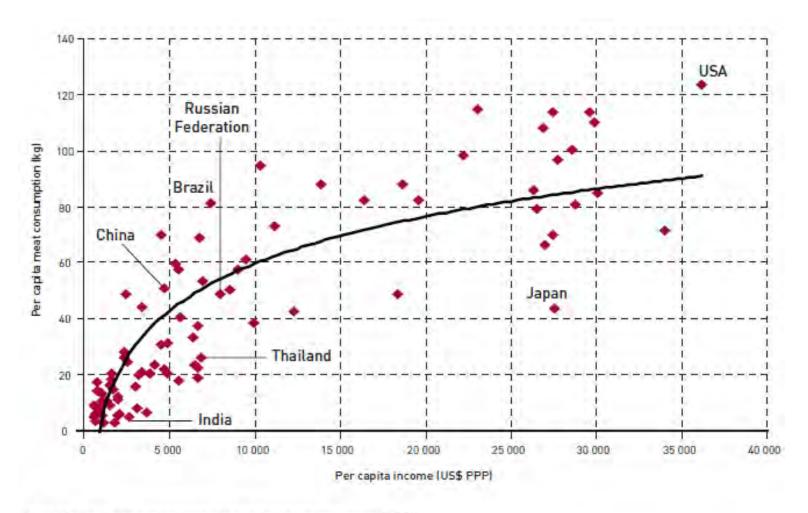
output

*seit 1977

Geschlossene Kreisläufe: Lösungen, welche die Haushalte einbeziehen, sind sowieso gefordert

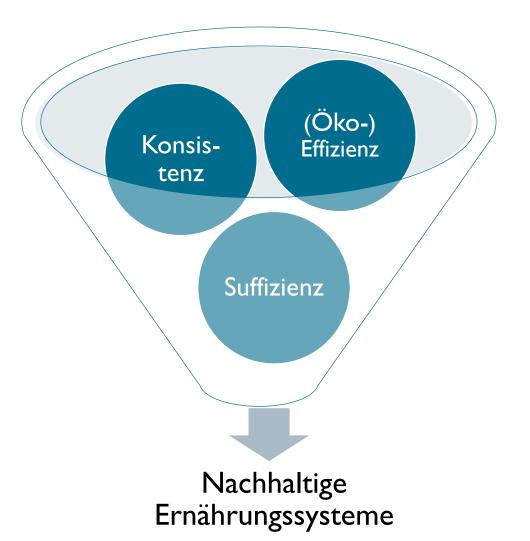
Udert K. M., Buckley C. A., Etter B., Wächter M., McArdell C. S., Kohn T., Strande L., Zöllig H., Fumasoli A., Oberson A. (2015): Technologies for the treatment of source-separated urine in eThekwini. Water SA

Perfekter Fleischersatz ist Realität


Strukturiertes Weizen-Protein, Kokosnuss-Öl, Kartoffel-Eiweiß, natürliche Aromen, 2 % Leg-Hämoglobin

Hefeextrakte, Salz, Teufelszunge-Harz, Xanthan, Vitamin E, Vitamin C, Thiamin (Vitamin BI), Niacin, Vitamin B6, Riboflavin (Vitamin B2), Vitamin B12.

Biochemiker Pat Brown, USA


Beziehung zwischen Einkommen und Fleischkonsum

Note: National per capita based on purchasing power parity (PPP).

Was braucht es, damit die Ernährung nachhaltig wird?

(Öko-)Effizienz:

Mehr Output mit weniger Input und kleinerem Umweltfußabdruck.

Konsistenz:

Anpassungsfähigkeit an regionalen, kulturellen und sozioökonomischen Kontext; Resilienz; Verträglichkeit von anthropogenen und natürlichen Stoffflüssen; cradle-to-cradle.

Suffizienz:

Beschränkung des Konsums und des Abfalls; Vermeidung von Rebound-Effekten.

Suffizienz: Verbinden der Ernährungs-, Gesundheits-Landwirtschafts- und Umweltpolitik

