

Mais profitiert von warmer Frühjahrswitterung

Beitrag im Bayerischen Landwirtschaftlichen Wochenblatt, Ausgabe 15/2011 Dr. Matthias Wendland, Klaus Fischer, Institut für Agrarökologie – Düngung, Bayerische Landesanstalt für Landwirtschaft, Freising

Im Durchschnitt Bayerns sind heuer im Boden bei Silomais 80 kg Stickstoff pflanzenverfügbar. Für eine standortangepasste Düngebedarfsermittlung sind jedoch wie im letzten Jahr die regionalen Unterschiede zu berücksichtigen.

Die Unterschiede zwischen den Regierungsbezirken fallen mit einer Differenz von ca. 50 kg N sehr deutlich aus. Landwirte in Ober- und Mittelfranken mit unterdurchschnittlichen N_{min} -Gehalten von 48 bzw. 63 kg müssen tiefer in den Mineraldüngersack greifen bzw. mehr organischen Dünger ausbringen als ihre schwäbische Kollegen, deren Böden für den Mais durchschnittlich 100 kg Stickstoff bereit halten. Oberbayern, Niederbayern und Unterfranken mit Werten um 85 kg N müssen ca. 10 kg weniger düngen als die Oberpfalz (76 kg N_{min}). Diese Werte beruhen auf ca. 1700 Bodenuntersuchungsergebnissen, die bis Mitte April im Rahmen des "Düngeberatungssystems für Stickstoff (DSN)" in Bayern festgestellt wurden. Witterungsabhängig können sich diese Werte bis zur Maissaat noch geringfügig verändern. Der jeweils aktuelle Stand der N_{min} -Gehalte bayerischer Böden kann daher auch im Internet unter http://www.lfl.bayern.de/iab/duengung/mineralisch/28835/ (Institut für Agrarökologie, Ökologischen Landbau und Bodenschutz) abgerufen werden. Dort werden die Werte laufend aktualisiert.

Betriebsspezifische Bewirtschaftungsmaßnahmen berücksichtigen

Die hier mitgeteilten Werte können nur eine Information über die durchschnittlichen N_{min}-Werte der Böden in den einzelnen Regionen darstellen. Sie repräsentieren Werte, die unter den dortigen Standortbedingungen, Witterungseinflüssen und der für das Gebiet üblichen Wirtschaftsweise entstanden sind. Wie weit die Werte auf dem eigenen Betrieb davon abweichen, kann nach dem Rechenschema der Tabelle 2 unter Berücksichtigung der Werte in den Tabellen 1 bis 4 abgeschätzt werden. Wir empfehlen jedoch, in regelmäßigen Abständen eigene Untersuchungen durchzuführen, um die Berechnungen zu überprüfen und einen solidarischen

Beitrag zur Aufrechterhaltung des für diese Empfehlungen notwendigen Datenumfanges zu leisten. Die Ringwarte des LKP sind Ihnen dabei behilflich.

Gesamtdüngebedarf

Als Beispiel für eine eigene Düngebedarfsermittlung ist der Rechenweg für Silomais und Körnermais mit dem bayrischen N_{min}-Mittelwert (0-90 cm) dargestellt. Die Sollwerte geben die Menge an Stickstoff an, die aus Düngung und Nachlieferung aus dem Boden zur Erreichung des angestrebten Ertragsniveaus notwendig ist. Bei davon abweichenden Ertragserwartungen sind die Sollwerte nach Tabelle 3 zu korrigieren. Der im Frühjahr im Boden vorhandene N_{min}-Stickstoff (Tabelle 1) wird vom Sollwert abgezogen. Zu- und Abschläge für die Bodenart sind standortspezifisch unter 4. zu berücksichtigen.

Auswertungen der LfL zeigen, dass Standorte mit langjährigem Wirtschaftsdüngereinsatz über eine hohe Stickstoffnachlieferung aus der organischen Substanz verfügen. Daher kann die Düngung in Abhängigkeit vom Viehbesatz bis zu 40 kg N/ha reduziert werden. Auch aus den von den Vorfrüchten auf den Schlägen zurückgebliebenen Pflanzenresten, den Ernterückständen und von Zwischenfrüchten wird im Laufe der Vegetation durch mikrobielle Umsetzungen Stickstoff freigesetzt und pflanzenverfügbar. Die Nachlieferung der Vorfrüchte kann bis zu 40 kg betragen, welche Vorfrucht mit welchem Abschlag zu berücksichtigen ist, kann der Tabelle 4 entnommen werden.

Wenn alle Zu- und Abschläge zum Sollwert berücksichtigt sind, ergibt sich in Zeile 10 der standortbezogene Jahresdüngerbedarf. Dieser Düngebedarf kann sowohl mit organischen Düngern als auch mit Mineraldüngern gedeckt werden. Wird Gülle im April ausgebracht, kann die N-Düngung je m³ Rindergülle (7,5 % TS) um 1,65 kg und je m³ Schweinegülle (5 % TS) um 2,1 kg reduziert werden.

Durch die zum Mais übliche Unterfußdüngung können 30 bis 40 kg N/ha gegeben werden. Sind höhere Mengen notwendig, kann der Rest entweder vor der Saat eingearbeitet oder bis zu einer Wuchshöhe von 20 cm verabreicht werden. Dabei ist der Düngetermin bei 20 cm Wuchshöhe (max. 60 kg N/ha) zu bevorzugen.

Nach der Düngeverordnung hat jeder Landwirt bei der Ermittlung des Düngebedarfs die im Boden verfügbaren Nährstoffmengen zu berücksichtigen. Für Stickstoff sind diese Nährstoffmengen durch Untersuchungen repräsentativer Proben oder durch Übernahme von Untersuchungsergebnissen vergleichbarer Standorte zu ermitteln. Da sie belegen müssen, wie Sie den Düngebedarf für Ihre Flächen ermittelt haben, sollten Sie, wenn Sie keine eigenen Untersuchungen vorliegen haben, diesen Beitrag heraustrennen und zu Ihren Unterlagen nehmen.

Düngung mit Biogasgärresten

Zur Biogaserzeugung werden aufgrund hoher Biomasseerträge und Gasausbeuten vorrangig Maissilagen und auch Körnermais eingesetzt. Im Sinne geschlossener Kreisläufe sollte das daraus entstandene Gärsubstrat wieder zur Nährstoffversorgung dieser Kulturen verwendet werden. Da der TS-Gehalt und die Inhaltsstoffe der Gärreste in Abhängigkeit von zusätzlich eingesetzten Substraten, den Temperaturen und der Verweildauer im Fermenter starken Schwankungen unterliegen, ist eine genaue Düngeplanung nur mit aktuellen, eigenen Gärrestuntersuchungen möglich. Grundsätzlich zeigt sich die Tendenz, dass Gärreste im Vergleich zu Rindergülle höhere Stickstoffgehalte und vor allem einen höheren Prozentsatz an Ammoniumstickstoff (NH₄-N) (ca. 65 % des N-Gesamt) aufweisen. Die Düngeplanung für Mais ist mit einem Gärrest, der nach den Untersuchungsergebnissen 5 kg Gesamt-N und 3,2 kg NH₄-N enthält, in Tabelle 2 dargestellt. Als pflanzenverfügbar können mindestens 75 % des NH₄-N, also 2,4 kg/m³ Gärrest angerechnet werden, bei einer optimalen Ausbringung (z. B. Gülledrill) können bis zu 100 % des NH₄-N angesetzt werden. Bei der Ausbringung von 40 m³ Gärrest werden damit mindestens 96 kg des errechneten Stickstoffdüngebedarfes abgedeckt, es bleibt noch ein Spielraum von ca. 30 kg Stickstoff für die Unterfußdüngung (Abbildung 1). Zu beachten ist beim Einsatz von Gärresten jedoch, dass im Vergleich zu Gülle nicht nur die Stickstoffgehalte, sondern auch die P₂O₅-Gehalte erhöht sind.

In dem angeführten Beispiel weist das Untersuchungsergebnis $2.7 \text{ kg P}_2\text{O}_5/\text{m}^3$ aus, folglich würden mit 40 m^3 Gärrest $108 \text{ kg P}_2\text{O}_5/\text{ha}$ ausgebracht, der Bedarf des Silomaises wäre damit gedeckt. Will man trotzdem auf eine Unterfußdüngung mit $P_2\text{O}_5$ nicht verzichten, muss die über den Bedarf hinausgehende Phosphatdüngung (abzüglich 20 kg/ha) bei anderen Kulturen wieder eingespart werden, um die Vorgaben der Düngeverordnung einhalten zu können.

Unterfußdüngung zu Mais mit Phosphat

Die Unterfußdüngung zu Mais mit Phosphat gehört bei schlecht versorgten Standorten, Bodenstrukturmängeln und ungünstigen Witterungsbedingungen zum Standard. Es ist jedoch zu beachten, dass nach der neuen Düngeverordnung der Phosphatüberschuss bei der Nährstoffsaldierung im sechsjährigen Durchschnitt nur 20 kg P_2O_5 /ha betragen darf. Vor diesem Hintergrund sollten Sie die Höhe der P_2O_5 -Gabe über die Unterfußdüngung kritisch überprüfen, besonders beim Einsatz von Gärresten. Zur Sicherung der Phosphatversorgung in der Jugendentwicklung sind 30 kg P_2O_5 vor allem bei ausreichender Bodenversorgung und regelmäßiger Ausbringung größerer Mengen Wirtschaftsdünger ausreichend.

Abbildung 1: Beispiel einer Düngung mit Biogasgärresten

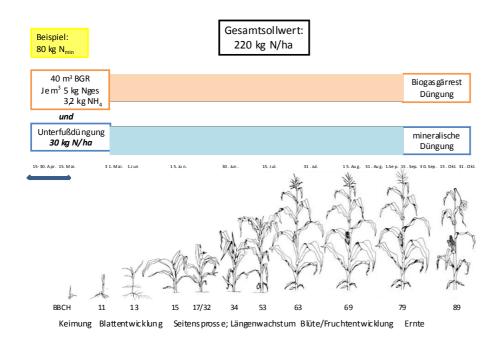


Tabelle 1: N_{min}-Gehalt (kg N/ha) bei Silo- und Körnermais in den einzelnen Regierungsbezirken

Regierungsbezirk	N _{min} -Gehalt
	(0-90 cm)
Oberbayern	84
Niederbayern	88
Oberpfalz	76
Oberfranken	48
Mittelfranken	63
Unterfranken	82
Schwaben	100
Bayern 2011	80
Bayern 2010	73
Bayern 2009	60
Bayern 2008	74
Bayern 2007	71

Auf flachgründigen Standorten mit einer Durchwurzelungstiefe bis 60 cm sollten nur 75 % vom N_{min} -Gehalt angesetzt werden.

Tabelle 2: Gesamt-N Bedarfsberechnung für Ackerkulturen ohne eigener N_{min}-Untersuchung (kg N/ha)

		Beispielsberechnung			
Hauptfrucht	Silomais	Körnermais	Silomais und Gärrest		
	kg N/ha	kg N/ha	kg N/ha		
1. Sollwert (siehe Tab. 3) (Summe aller N-Gaben)	210	210	220		
2. N _{min} -Gehalt (siehe Tab. 1)	- 80	- 80	- 80		
3. Bestandsentwicklung (bei Winterungen schwach normal gut +10 0 -10	0	0	0		
4. Bodenart ¹⁾ leichtmittel/schwerhumosanmoor+100-10-20	rig 0	0	0		
5. N-Nachlieferung aus org. Düngung ²⁾ GV/ha <0,5 0,5-1,0 1,1-1,5 1,6-2,0 >2,0 0 -10 -20 -30 -40	-20	-20	-10		
6. Vorfrucht - Gruppe (siehe Tab. 19) A B C D E 0 -10 -20 -30 -40	0	0	0		
7. Vorfrucht - Ernterückstände Strohbergung Blattbergung ja nein ja nein 0 +10 0 -10	0	0	0		
8. Zwischenfrucht (vor Hauptfrucht) Nichtleguminosen Leguminosen abgefahren ja nein 0 0	0	0	0		
9. Anrechnung einer Herbstdüngung (nach Vorfruchternte bis Winter) minera- Gülle, Stallmist, ohne Dülisch Frucht- Kompost gung wasser -20 -20 -10 0	n- 0	0	0		
10. notwendige Düngung (min. + org.) Jahresbedarf (Summe aller Gaben)	= 110	= 110	= 130		
	minus	minus	minus		
11. org. Düngung (50 m³ Rindergülle im April, bzw. 40 m³ Gärrest)	- 83	- 83	- 96		
12. notwendige mineralische Düngung (Summe aller Gaben)	= 27	= 27	= 34		

¹⁾ Bei Böden mit einer Ackerzahl von unter 45 kann ein weiterer Zuschlag von 10 kg N/ha gegeben werden.

Die N-Nachlieferung wird aus der langjährigen organischen Düngung berechnet. Bei Betrieben mit zusätzlicher organischer Düngung z. B. Kompost, Klärschlamm, Biogasgärreste wird eine langjährige N(gesamt)-Düngung von 80 kg/ha mit ca. 1 GV/ha gleichgestellt. Bei sehr langer Ausbringung (> 25 Jahren) von ausschließlich Stallmist oder Kompost sollte die Höhe der N-Nachlieferung doppelt so hoch angesetzt werden.

Tabelle 3: N-Sollwerte in Abhängigkeit vom Ertrag (kg N/ha)

Haupt- frucht	N-Sollwerte in Abhängigkeit vom Ertrag (kg N/ha)					
	<80	80-89	90-99	100-109	110-119	>=120
Körnermais	180	190	200	200	210	220
	Ertragsniveau in dt/ha					
	<400	400 -499	500-599	600-699	700-799	>800
Silomais	180	190	200	210	220	230

Tabelle 4: Einteilung der Vorfrüchte in Vorfruchtgruppen

Vorfruchtgruppe	Vorfrucht
А	Getreide, Sonnenblumen, Lein, S-Mais, Kartoffeln, Sonstige
В	Raps, Hopfen, K-Mais
С	Rotationsbrache, Futterbau, Rüben
D	Körnerleguminosen, Gemüse
E	Dauerbrache, Grünland